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Machine Learning: distributional robust optimisation

NS 0={Q : df(P,Q) < e}

ambiqguity set of distributions.



Machine Learning: distributional robust optimisation
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Machine Learning: risk measures

ERM Traditional machine learning algorithms
designed to work well on average across
the population. Not suitable for

- heterogeneous populations.
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Machine Learning: risk measures

ERM Superquantile

03 04 0% (Rockafellar). Coherent risk measures have
a unique representation as a set of

probability distributions, Q.
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Machine Learning: Multi-distribution learning

Given a set (0 of possible distributions one can sample from, design
a predictor that works well for all O € Q.
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Machine Learning: Institutional separation

, Given the prediction, a doctor has to act:
degree of confidence .
to treat the patient or not
treatment A or treatment B
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Machine Learning: Calibration
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Machine Learning: Calibration

Informal:
Confidence calibration means that the
degree of confidence proportion of samples for which the classifier
makes correct prediction must be a.
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Machine Learning: Calibration

Definition 2.1. (Canonical Calibration). Given d some divergence measure, €.g. squared error, a confidence
predictor h : X — AWMl is said to be (perfectly) canonically calibrated if the following holds true:

Sxy)~p [A(PLy | h(x)],h(x))] = 0. (1)
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Machine Learning: Calibration

Definition 2.1. (Canonical Calibration). Given d some divergence measure, €.g. squared error, a confidence
predictor h : X — AWMl is said to be (perfectly) canonically calibrated if the following holds true:

Sxy)~p [A(PLy | h(x)],h(x))] = 0. (1)
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Alignment of the prediction /2(X) and the reality P(Y | h(X)).



Machine Learning: Calibration bridges institutional separation

Theorem: If forecasts § are calibrated, then for every u, the best
‘esponse policy f*(§) = BR(u, §) is a dominant strategy amongst all
policies f: S — A mapping forecasts to actions.

@ Credits: Aaron Roth

Classifier

Alignment of the prediction /2(X) and the reality P(Y | h(X)).
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For simplicity, take % = {0,1},h : X — A

Calibration demands <
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Machine Learning: Calibration bridges institutional separation

For simplicity, take % = {0,1},h : X — A

Calibration demands
PY=1|h(X)=v)=v

Of all the days, it was announced that it’ll rain
with confidence v, it actually rained v times.

a* = arg max
acA

= Y~u [M(Ya a)]

v ey |3

Best response policy is the dominant policy.

Alignment of the prediction /2(X) and the reality P(Y | h(X)).

Y ~ Ber(v4)



Machine Learning: Calibration bridges institutional separation
But it Is not enough.

For simplicity, take % = {0,1},h: X — A U = _[Y]

Calibration demands
PY=1|h(X)=v)=v

Of all the days, it was announced that it’ll rain
with confidence v, it actually rained v times.

Alignment of the prediction /2(X) and the reality P(Y | h(X)).



Machine Learning: Calibration bridges institutional separation
But it Is not enough.

For simplicity, take % = {0,1},h: X — A U = _[Y]

Calibration demands
PY=1|h(X)=v)=v

Of all the days, it was announced that it’ll rain
with confidence v, it actually rained v times.

Not informative

Alignment of the prediction /2(X) and the reality P(Y | h(X)).
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Definition 2.3. (Refinement error). Let H some notion of information (e.g. entropy). The refine-
ment_error of a confidence predictor h : X — AWl is defined as the average information content:




Machine Learning: Refinement
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Partitioning should be informative or discriminatory of the reality.




Machine Learning: Proper loss functions decompose into calibration and refinement errors

Lemma 2.5. (Decomposition of proper scoring risk into calibration and refinement error). (Brocker, 2009).
Given a space X x Y with a distribution P specified on it, a confidence predictor h : X — AP whose risk

in expectation over P is evaluated by a proper scoring loss £ : Y x AVl — 0, M|, the said risk decomposes
into the calibration error term and the refinement term, as below:

LE(y,h (%) =E|de (P (y | h(x)),h(x))] + E[H,(P(y]|h(x))), )
calibration error refinement
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For x, a proper loss function £ evaluates the forecast /& against the target n = P(Y | x)

L(n, h) = [£(Y, h)]

— Yoon

Properiety means:  L(n,h) — L(n,n) >0 Vn,h

L(n,n) =t
h

[£(Y, h)]

— Yoor

Proper loss functions elicit truthful forecasts.
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For x, a proper loss function £ evaluates the forecast /& against the target n = P(Y | x)

L(n, h) = [£(Y, h)]

— Yoon

Properiety means:  L(n,h) — L(n,n) >0 Vn,h
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GAME THEORY, MAXIMUM ENTROPY, MINIMUM
DISCREPANCY AND ROBUST BAYESIAN DECISION THEORY!
By PETER D. GRUNWALD AND A. PHILIP DAWID

CWI Amsterdam and University College London

® We describe and develop a close relationship between two prob-
I lems that have customarily been regarded as distinct: that of max-
S imizing entropy, and that of minimizing worst-case expected loss.
[ ) f Using a formulation grounded in the equilibrium theory of zero-sum

games between Decision Maker and Nature, these two problems are
shown to be dual to each other, the solution to each providing that to
the other. Although Topsge described this connection for the Shan-
non entropy over 20 years ago, it does not appear to be widely known

Generalized entropy function associated with £



Machine Learning: Geometry of Proper loss functions

Definition 2.4. (Characterizing proper scoring loss via the generalized entropy function). (Ovcharov, 2018).
A scoring loss £ : ) X AVl R, 1s called (strictly) proper iff there exists a (strictly) concave function

H : APl — R and a sub-gradient AH : AVl — £ (A'y |) (the set of linear functionals or hyperplanes over
the span AY) of H such that

{(y,h(x)) = H (h(x)) + AH (h(x)) - (6Y — h(x)), Vh(z) € AV



Machine Learning: Geometry of Proper loss functions

calibration error

Hv)
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Machine Learning: Proper loss functions decompose into calibration and refinement errors

Lemma 2.5. (Decomposition of proper scoring risk into calibration and refinement error). (Brocker, 2009).
Given a space X x Y with a distribution P specified on it, a confidence predictor h : X — AP whose risk

in expectation over P is evaluated by a proper scoring loss £ : Y x AVl — 0, M|, the said risk decomposes
into the calibration error term and the refinement term, as below:

(2)

0 S[HA(P(Y ] X)]

Bayes risk



Machine Learning: Single distribution learning summary

Learning with proper loss functions has the benchmark as [} [ H Lﬂ(}/])]

Calibrated and well-refined predictors naturally emerge due to loss minimisation.
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Given a set (O of possible distributions one can sample from, design
a predictor that works well for all O € Q.

What is the benchmark?

Relation between loss minimisation and calibration?
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Machine Learning: Multi-distribution learning

Given a set O of possible distributions one can sample from, design
a predictor that works well for all

What is the benchmark?

Proposition 3.2. (Attainable lower bound in MDL). For MDL over a compact set of distributions Q with a
(proper) loss function £ : ) X AV 0, M| that is continuous in the second argument, and a hypothesis
class H = AV, the quantity supge g infren Eq £ (y, h (x))] forms the attainable lower bound on the error

sup hinf = [z/” (Y, h(X))]
0O eH

= Sup E[H,(Q(Y|X))]
Qe@

maximum expected generalized entropy over @




Machine Learning: Multi-distribution learning

Given a set O of possible distributions one can sample from, design
a predictor that works well for all

Takeaway 1: In MDL, learning with respect to the distribution with the maximum (generalized) entropy
associated with the considered loss function gives the attainable lower bound for MDL.
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Machine Learning: Multi-distribution learning

Given a set (O of possible distributions one can sample from, design
a predictor that works well for all O € Q.

Takeaway 1: In MDL, learning with respect to the distribution with the maximum (generalized) entropy
associated with the considered loss function gives the attainable lower bound for MDL.

Shannon’s source coding theorem.

sup hinf = [z/” (Y, h(X))]
0O eH

= Sup E[H,(Q(Y|X))]
Qe@

maximum generalized expected entropy over @
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Machine Learning: Multi-distribution learning

Could this lower bound be attained in practice?

Zero-sum games and Nash equilibrium

On-Demand Sampling:
Learning Optimally from Multiple Distributions *

Nika Haghtalab, Michael 1. Jordan, and Eric Zhao

University of California, Berkeley

Abstract

Societal and real-world considerations such as robustness, fairness, social welfare
and multi-agent tradeoffs have given rise to multi-distribution learning paradigms,
such as collaborative [3], group distributionally robust [36], and fair federated

learning [27]. In each of these settings, a learner seeks to minimize its worst-
cace lnee nver a et nf n nredefined dictribntinne while neino ac few camnlec ac
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Takeaway 1: In MDL, learning with respect to the distribution with the maximum (generalized) entropy
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Machine Learning: Multi-distribution learning

Takeaway 1: In MDL, learning with respect to the distribution with the maximum (generalized) entropy
associated with the considered loss function gives the attainable lower bound for MDL.

Relation between loss minimisation and calibration?

Proposition 4.1. (Calibration error bound). For MDL over Q and the loss function £, and the optimal
predictor h* := Q* (y | xX) with the maximum generalized entropy, the calibration error for any distribution

Q € Q is bounded as below:

2Q [de (Q(y | P (%)), ™ (x))] < Eg [He (Q (y | x))] — Eq [He (Q(y | )]

Furthermore, barring any distributional assumptions between () and Q*, the predictor h* (x) =
Q* (y | x = @) cannot be perfectly canonically calibrated for Q).




Machine Learning: Multi-distribution learning

Takeaway 1: In MDL, learning with respect to the distribution with the maximum (generalized) entropy
associated with the considered loss function gives the attainable lower bound for MDL.

Relation between loss minimisation and calibration?

Proposition 4.1. (Calibration error bound). For MDL over Q and the loss function £, and the optimal
predictor h* := Q* (y | xX) with the maximum generalized entropy, the calibration error for any distribution

Q € Q is bounded as below:

2Q [de (Q(y | P (%)), ™ (x))] < Eg [He (Q (y | x))] — Eq [He (Q(y | )] |

Furthermore, barring any distributional assumptions between Q and Q, the predictor h* (x) =
Q* (y | x = @) cannot be perfectly canonically calibrated for Q).

Calibration error bounded above by expected generalized entropy difference.




Machine Learning: Multi-distribution learning

Relation between loss minimisation and calibration?

mmmm generalized entropy
=== tangent at the forecast ”
&> calibration error > 4

Figure 1: Calibration disparity intuition in MDL.:



Machine Learning: Multi-distribution learning

Relation between loss minimisation and calibration?

mmmm generalized entropy
=== tangent at the forecast ”
&> calibration error > 4

Corollary 4.3. There is a fundamental calibration-refinement trade-off in MDL, even at optimality. Further-
more, a prediction has different meaning for different distributions.

Figure 1: Calibration disparity intuition in MDL.:



Machine Learning: Multi-distribution learning and Institutional Separation

Relation between loss minimisation and calibration?

Proposition 4.4. (Calibration and decision-making). Given Q and a predictor h calibrated with respect
to QF € Q with the maximum generalized entropy for a loss function ¥, a decision rule § : h(x) —
arg minge 4 Ky n(x) [ (a,y)] with the action space A and a cost function c : A X Y — R is optimal in the
worst case sense over Q as long as the cost function c is consistent with the loss function .




Machine Learning: Multi-distribution learning and institutional separation

Relation between loss minimisation and calibration?

Proposition 4.4. (Calibration and decision-making). Given Q and a predictor h calibrated with respect
to QF € Q with the maximum generalized entropy for a loss function ¥, a decision rule § : h(x) —
arg minge 4 Ky n(x) [ (a,y)] with the action space A and a cost function c : A X Y — R is optimal in the
worst case sense over Q as long as the cost function c is consistent with the loss function .

Contrary to calibration in the single distribution case,

calibration in MDL bridges institutional separation for a
limited class of loss functions.



Machine Learning: Multi-distribution learning

Given a set (O of possible distributions one can sample from, design
a predictor that works well for all O € Q.

What is the benchmark?

Takeaway 1: In MDL, learning with respect to the distribution with the maximum (generalized) entropy
associated with the considered loss function gives the attainable lower bound for MDL.

Relation between loss minimisation and calibration?

Takeaway 2: We have discovered a fundamental calibration-refinement trade-off in the MDL framework.
This trade-off 1s determined by the heterogeneity in terms of the (generalized) entropy in the considered

envelope of distributions. Furthermore, learning (optimally) over multiple distributions also does not truly
bridge the institutional separation between model designers and decision-makers. A decision-maker 1s

always constrained by the types of cost functions they can consider when exploiting MDL.




Machine Learning: Multi-distribution learning

Main takeaway:

Guide to Practitioners We next discuss the relevance of our results for practice. We agree that calibration
might not be required i1n every applications. For example, 1n a fault tolerance system, if the institution only
cares about a certain fault cost function, then the MDL framework would guarantee the institution against
the worst-case scenario. However, in the case of general application cases like healthcare where a medical
professional has to reason about arbitrary cost / utility functions, calibration of the predictor becomes an
underlying requirement to bridge the institutional separation between the training time loss function and the
decision-time cost / utility function. In particular, consider the motivated use-case of MDL where several
different healthcare facilities jointly learn a single predictor using the MDL framework to individually allocate
the decisions. In this scenario, our results indicate a critical limitation. For one, calibration for each healthcare
facility 1s not guaranteed, and secondly, the miscalibration errors can be non-uniform leading to a different
interpretation of the same prediction for each facility. Albeit our results do not give an informative lower
bound for the calibration error for each distribution, they still inform that care must be taken to equitably use
the predictor for arbitrary decisions. Besides post-processing on the decision-makers side, designers can also
opt for directly minimizing the upper-bound for the calibration error in Proposition 4.1 (see section 6: DRO),
or certify that the overall error Eg |4 (y, h* (x))] is significantly less for each Q) # Q*.




Machine Learning: Multi-distribution learning

Main takeaway:

1. Calibration is useful for decision-making, but is not required in every application.

2. MDL guarantees one against the worst-case scenario. For example, if some

institution only cares about certain cost function, like a fault tolerance loss, then
MDL gives error control.

3. However, for general applications like healthcare, there is a critical limitation.



Machine Learning: Multi-distribution learning (Future work)

1. Boosting-like approaches: Boosting like methods, as adopted in the multi-calibration literature
[1], when adapted to the MDL framework, would require first sample access to the distribution

where significant miscalibration holds, and then adopting some post-processing approach (like BOOSti n g I i ke
temperature scaling or histogram binning) to fix the problem. However, such a method when

applied to the learning for K distributions would eventually result in K different predictors, one a p p rO aC h eS -to fiX

tailored to each distribution. This could be a feasible way to post-process an MDL predictor to

equitably use for each distribution, as we also briefly note in Section 6 Fairness / Min-max Cal i b rat i O n
fairness paragraph. However, this analysis has to be supplemented with the benefits of using an
MDL predictor in the first place, as with given access to distributions, one can design K d |S parlt | eS

predictors for each of them. So the potential question that remains is: is it sample efficient to
design an MDL predictor first and to post-process it later compared to learn K predictors from
the beginning? What are the trade-offs there? Furthermore, this goes against the standard
convention in MDL that a single predictor should work for every distribution in the set. While

2. Rethinking MDL: Our analysis also reasons to re-think the MDL framework from the ground-up.
For example, MDL is conventionally operationalised by a single aggregation function (e.g. max-
min / min-max). This requires assumptions on the decision-maker, for example, using min-max
implicitly assumes that the decision-maker is strongly risk-averse with respect to the training R .th . k' M D L
time loss function [2], which leads to the calibration limitation we highlight in this submission. e I n I n g
However, a more decision-theoretic friendly setup would be be design a predictor that can help
decision-makers with arbitrary aggregation functions to derive their decisions. Since MDL is
inherently a multi-objective optimisation problem, a natural solution strategy here is finding the

Pareto-optimal solutions which can then be further combined with decision-makers information
to derive equitable decision-making.

3. Personalised predictors: One can also potentially adopt the personalised setting as highlighted
in Blum et al. [3] where first a predictor is learned to minimise an expected loss where the
expectation is taken with respect to the mixture of K distributions in the MDL set. Then one

can adopt boosting like strategy to design K personalised predictors tailored to each Perso n al |Sed p red ICtO rS

distributions. This requires both reformulating standard MDL convention, and identifiable
sample access at deployment time.
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Abstract

Modern challenges of robustness, fairness, and decision-making in machine learning have led
to the formulation of multi-distribution learning (MDL) frameworks in which a predictor 1s
optimized across multiple distributions. We study the calibration properties of MDL to better
understand how the predictor performs uniformly across the multiple distributions. Through
classical results on decomposing proper scoring losses, we first derive the Bayes optimal
rule for MDL, demonstrating that it maximizes the generalized entropy of the associated loss
function. Our analysis reveals that while this approach ensures minimal worst-case loss, it

can lead to non-1mnifaorm calihratinon errare acrncee the mnltinle dictrihnitinne and there 1¢ an
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GAME THEORY, MAXIMUM ENTROPY, MINIMUM
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We describe and develop a close relationship between two prob-
lems that have customarily been regarded as distinct: that of max-
imizing entropy, and that of minimizing worst-case expected loss.
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