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𝔼P [ℓ (h (X), Y)]

Traditional machine learning algorithms 
designed to work well on average across 
the population. Not suitable for 
heterogeneous populations.
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Machine Learning: risk measures

𝔼P [ℓ (h (X), Y)]

(Rockafellar). Coherent risk measures have 
a unique representation as a set of 
probability distributions, .𝒬

Figure from:



Machine Learning: Multi-distribution learning
Given a set  of possible distributions one can sample from, design 
a predictor that works well for all .
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Alignment of the prediction  and the reality .h(X) P(Y | h(X))

But it is not enough.

ν = 𝔼[Y]

Not informative
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ν1

ν2 ν3

ν4

ν5

ν1

ν2

ν3ν4

ν5

Partitioning should be informative or discriminatory of the reality. 
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For , a proper loss function  evaluates the forecast  against the target x ℓ h η = P(Y |x)

L(η, h) = 𝔼Y∼η[ℓ(Y, h)]

L(η, h) − L(η, η) ≥ 0 ∀η, hProperiety means:

Proper loss functions elicit truthful forecasts.

L(η, η) = inf
h

𝔼Y∼η[ℓ(Y, h)]

:= Hℓ(η)
Generalized entropy function associated with ℓ
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ν

calibration error

Hℓ(ν)



Machine Learning: Proper loss functions decompose into calibration and refinement errors

0 𝔼[Hℓ(P(Y |X))]

Bayes risk



Machine Learning: Single distribution learning summary

Learning with proper loss functions has the benchmark as 𝔼[Hℓ(η)]
Calibrated and well-refined predictors naturally emerge due to loss minimisation.
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maximum generalized expected entropy over 𝒬

Shannon’s source coding theorem.
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Machine Learning: Multi-distribution learning
Given a set  of possible distributions one can sample from, design 
a predictor that works well for all .

𝒬
Q ∈ 𝒬

Relation between loss minimisation and calibration?

Calibration error bounded above by expected generalized entropy difference.
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Machine Learning: Multi-distribution learning and institutional separation

Relation between loss minimisation and calibration?

Contrary to calibration in the single distribution case, 
calibration in MDL bridges institutional separation for a 
limited class of loss functions.
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Main takeaway: 

1. Calibration is useful for decision-making, but is not required in every application.
2. MDL guarantees one against the worst-case scenario. For example, if some

institution only cares about certain cost function, like a fault tolerance loss, then 
MDL gives error control.

3. However, for general applications like healthcare, there is a critical limitation.
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