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Abstract

With Artificial Intelligence (AI) systems getting deployed in consequential decision-making applications, it’s
safer to ask for human advice in these situations when the AI system is at the risk of providing the wrong
decision. The learning to defer (L2D) framework has the potential to make AI systems safer. For a given input,
the system can defer the decision to a human if the human is more likely than the model to take the correct
action. We study the confidence calibration of L2D systems, investigating if the probabilities they output
are sound. We find that Mozannar and Sontag’s (2020) multiclass framework is not confidence calibrated
with respect to expert correctness. Moreover, it is not even guaranteed to produce valid probabilities due
to its parameterization being degenerate for this purpose. We propose an L2D system based on one-vs-all
classifiers that is able to produce calibrated probabilities of expert correctness. Furthermore, our loss function
is also a consistent surrogate for multiclass L2D, like Mozannar and Sontag’s (2020). Our experiments verify
that not only is our system calibrated, but this benefit comes at no cost to accuracy. Our model’s accuracy is
always comparable (and often superior) to Mozannar and Sontag’s (2020) model’s in tasks ranging from
hate speech detection to galaxy classification to diagnosis of skin lesions. We further provide consistent
learning algorithms for learning to defer in the case of multiple experts and study their confidence-calibration
properties. Our experiments demonstrate that our proposed system provides well-calibrated confidence even
in the case of multiple experts.

Keywords: AI-Safety, Human-AI Collaboration, Uncertainty Quantification, Confidence Calibration, Decision-
making, Probabilistic Machine Learning, Learning Theory.
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Introduction 1
—I have a story for you, he said. A story about my own encounter with the king of the winds.

— Amor Towles, The Lincoln Highway

In recent times, machine learning systems are being deployed in ever
more consequential and high-stakes tasks such as healthcare (Zoabi
et al., 2021; Kadampur and Al Riyaee, 2020), criminal justice (Zhong
et al., 2018; Chalkidis et al., 2019), and autonomous driving (Grigorescu
et al., 2020). In these high-stake applications, the cost associated with
misclassification is very high. Thus, the trust and safety of these systems
are paramount (Hendrycks and Dietterich, 2019; Nguyen et al., 2015). One
near-term solution is ensuring a human is involved in decision-making.
Sensitive and safety-critical applications like healthcare and self-driving
cars would help if these systems could abstain from predicting so that
expert humans can intervene. For example, learning with a rejection option
(Chow, 1957) allows the model to abstain from making a decision, instead
passing the burden to a human. The decision to abstain or not is usually
derived from the model’s confidence. A winding stretch of road for a
self-driving car could make the system unconfident in its abilities. The
system would then refuse to drive and forces the human to take control.
When the system becomes confident again (e.g., on a straight road), it
can take back control from the human. This prevents the system from
making the wrong predictions and results in fatal situations.

Learning to defer (L2D) (Madras et al., 2018) is another framework that
supports machine-human collaboration. In L2D, the human’s confidence
is modeled and the machine’s. This allows the system to compare the
human’s and model’s expected performances. Thus, L2D systems defer
when the human is more likely than the model to take the correct action. Re-
turning to the example of a self-driving car, and L2D system would pass
control to the human only when it expects the human to drive better than
itself. In addition to safety, such behavior allows for an efficient division
of labor between the human and machine. By knowing what the human
knows, the model is free to adapt itself to complement the human. The
model can concentrate on performing easy tasks well if it knows a human
can be relied upon for harder tasks.

Most previous work has attempted to improve the overall accuracy of
L2D systems. However, if these systems are to be used in safety-critical
scenarios, other factors such as trust, transparency, and fairness are
important as well (Madras et al., 2018). Furthermore, to enable successful
intervention from human experts in critical cases, these models must
predict responsibly. This means they should be faithful to the expert hu-
mans. A machine learning model should accurately reflect its uncertainty
and the risk associated with decision-making based on its prediction.
Tschandl et al. (2020) found that AI systems can mislead physicians into
incorrect diagnoses, even when the doctor is initially confident. To help
prevent such scenarios, we want our systems to be well calibrated. The
output probabilities should reflect the true uncertainties of the model
and human. In other words, the L2D system should be a good forecaster.
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If the system says the expert has a 70% chance of being correct, then
the expert should be correct in about 70 out of 100 cases. If an L2D
system is being used for medical diagnosis, a doctor will want to inspect
the system’s probabilities, at least for sanity checking. In the event of
a misdiagnosis, these probabilities will also be useful for finding the
source of bugs or other problems. Madras et al. (2018) emphasize the
importance of responsibility and fairness for L2D frameworks.

In this thesis, we study the calibration of L2D systems. We focus on Mozan-
nar and Sontag’s (2020) formulation since it is the only consistent surrogate
loss for multiclass L2D. Consistency is an important criterion in machine
learning theory for the success of a classification algorithm optimizing
the surrogate loss instead of the target loss (which may be difficult to com-
putationally optimize). It means that the minimizer of the surrogate loss
would correspond to the Bayes optimal solution to the learning problem.
Mozannar and Sontag’s (2020) proposed the first surrogate loss for L2D
by using an augmented label space and novel reduction to cost-sensitive
learning that resembles the cross-entropy loss for a softmax parameteriza-
tion. They prove that the minimizers of their surrogate loss function over
all measurable functions agree with the Bayes optimal rule for L2D.

We find that the Mozannar and Sontag (2020) loss results in models that
are not well-calibrated with respect to expert correctness. The problem is
intrinsic: the softmax parameterization allows the estimator to be greater
than one. This results due to the fragility of the Bayes rule for L2D, where
the calibrated confidence estimates are a sufficient condition but not the
necessary one. Thus, the problem suffers from identifiability issues and
allows for many solutions that do not correspond to valid confidence esti-
mates. We propose an alternative loss based on one-vs-all classifiers that
do not have this issue. We use the method of error correcting output codes
(Ramaswamy et al., 2018) to show the multiclass L2D problem reduces to
multiple binary classification problems. In turn, our one-vs-all surrogate
is a consistent loss function, thus making it a superior alternative to
Mozannar and Sontag’s (2020) loss. In experiments ranging from hate
speech detection to galaxy classification to diagnosis of skin lesions, our
model always performs comparably, if not better than, the Mozannar
and Sontag (2020) formulation in addition to other L2D frameworks (e.g.,
Okati et al. (2021)) and common baselines (e.g., confidence thresholds).

We also extend the consistent surrogate methods for L2D to consider
multiple experts, designing consistent surrogates for learning to defer
with multiple experts for the first time. We further examine the confidence
calibration properties for both the surrogate methods finding that Mozan-
nar and Sontag’s (2020) formulation exhibits mis-calibration error, which
further increases egregiously with increasing the number of experts. Fur-
thermore, their method allows mis-calibration to propagate between the
estimates of expert correctness confidence. Our proposed loss function is
stable for multi-experts settings and doesn’t show similar properties.

1.1 Organization

The thesis further consists of seven chapters and an appendix after that.
In Chapter 2 (Preliminaries), we introduce the general theory of solving
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classification problems with surrogate losses along with necessary results
on their calibration and consistency with respect to (w.r.t) the target loss.
In Chapter 3 (Learning to Defer), we theoretically formalize the problem
of learning to defer and derive its Bayes optimal rule. We further study
the only consistent surrogate loss proposed in the literature for learn-
ing to defer and investigate the confidence calibration property of the
confidence estimates returned by a classification algorithm minimizing
this surrogate loss. This chapter states the main result of this thesis w.r.t
the confidence calibration property. In Chapter 4 (One-vs-All Surrogate
Loss for Learning to Defer), we state the main contribution of this thesis
and prove our main result. We empirically verify the properties of our
proposed method in Chapter 5 (Experiments). In Chapter 6 (Calibration
of Learning to Defer to Multiple Experts), we extend the learning to
defer framework to allow multiple experts and study the confidence
calibration property in this setting. We survey related works in Chapter 7
(Related Work) and conclude this thesis with discussion, reflections, and
directions for future work in Chapter 8 (Discussion). We provide proof
of all the necessary statements of this thesis in Chapter A (Appendix).



1: Note that K and K̂ can be different.

2: Example of one such loss function is
ℓ0−1 : (𝑦, �̂�) ↦→ 𝕀[𝑦 ≠ �̂�], where 𝕀 is an
indicator function. ℓ0−1 is called 0 − 1
loss and will be particularly interesting
in this thesis.

3: Bayes ℓ -risk is the minimal ℓ -risk one
can hope to achieve, and the classification
problem aims to find ℎ with Bayes ℓ -risk.

Preliminaries 2
He began at the beginning—the very beginning—by opening to the endpapers. And it was a good thing he had.

— Amor Towles, The Lincoln Highway

In this chapter, we formalize a classification problem in machine learning
in its general setting and state its goals. We assume that the reader is
comfortable with probability theory and slightly familiar with measure
theory (the notion of measurable functions).

2.1 A General Classification Problem and
Surrogate Losses

Let X⊆ ℝ𝑑 denotes an input space, and Ydenotes an output label space
which we will always assume to be a categorical encoding of multiple
K classes, i.e. Y = {1, 2, . . . ,K} := [K]. We also assume an unknown
distribution D over X× Y, and let x and y be random variables over
D. And let 𝒙 and 𝑦 denote the realizations of random variables x and y
respectively. Furthermore, let Ŷ= [K̂] denotes an output prediction label
space, which again is assumed to be categorical encoding of �̂� classes1.
A classification problem in machine learning aims to learn a mapping
ℎ : X→ Ŷ. We call ℎ a prediction function, and we evaluate the perfor-
mance of such a prediction function via a loss function ℓ : Y× Ŷ→ ℝ+.2
The goal of classification problem is then to find a prediction function
ℎ that minimizes the ℓ -risk which is defined as

Rℓ
D
[ℎ] = 𝔼𝒙 ,𝑦∼D [ℓ (𝑦, ℎ (𝒙))] . (2.1)

We also define a minimal ℓ -risk, referred to as the Bayes ℓ -risk 3, denoted
as Rℓ ,∗

D
, as below

R
ℓ ,∗
D

= inf
ℎ:X→Ŷ

Rℓ
D
[ℎ].

In practical settings, we assume access to the finite sample 𝑆 = {𝒙𝑖 , 𝑦𝑖}N
𝑖=1

drawn independently and identically distributed from D, denoted as
DN. We also fix some hypothesis class H, and the classification algorithm
aims to find ℎ𝑆 ∈ Hby minimizing an empirical version of ℓ -risk R̂ℓ

D
[ℎ],

defined formally as

R̂ℓ
D
[ℎ] = 1

N

N∑
𝑖=1

ℓ (𝑦𝑖 , ℎ (𝒙𝑖)) , (𝒙𝑖 , 𝑦𝑖) ∼ DN. (2.2)

An important notion of success for such a classification learning algorithm
is the convergence of Rℓ

D
[ℎ𝑆] → R

ℓ ,∗
D

, i.e. when the learning algorithm
receives increasingly large sample 𝑆 ∼ DN, the ℓ -risk of the function ℎ𝑆
returned by the learning algorithm converges in probability to the Bayes
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4: Note that 𝑔 ◦ 𝑓 : X→ Ŷ. And a com-
mon example of such a decoding func-
tion in machine learning is the arg max
function.

ℓ -risk, written formally as

∀𝜖 > 0 ℙ𝑆∼DN

(
Rℓ

D
[ℎ𝑆] > R

ℓ ,∗
D

+ 𝜖
)
→ 0 as N → ∞. (2.3)

However, minimizing the ℓ -risk (similarly, empirical ℓ -risk) is computa-
tionally difficult for some classes of loss functions. For instance, for ℓ0−1,
computationally minimizing ℓ − risk is NP-hard. Thus, as an alternative to
ℓ , we employ a surrogate loss function 𝜓 : Y× V→ ℝ+ over a surrogate
prediction space V⊆ ℝK̂ and minimize a 𝜓-risk instead.

More formally, for a surrogate prediction space V⊆ ℝK̂, a surrogate loss
𝜓 : Y× V→ ℝ+, the goal is to learn a function 𝑓 : X→ Vover some
class of functions Fand a suitable decoding function 𝑔 : V→ Ŷ. 4 We
then have the usual notions of R𝜓

D
[ 𝑓 ] and R

𝜓,∗
D

.

An important question in such a setting is whether the convergence
R

𝜓
D
[ 𝑓𝑆] → R

𝜓,∗
D

implies the convergence Rℓ
D
[𝑔 ◦ 𝑓𝑆] → R

ℓ ,∗
D

?

A positive answer to this question is necessary for the success of the
classification problem learned by minimizing a surrogate loss 𝜓, and it
is formally known as the consistency of the surrogate loss 𝜓 with respect
to (w.r.t) the target loss ℓ . We formalize it in Definition 2.1.1.

Definition 2.1.1 (F-Consistency). A surrogate loss function 𝜓 is said to be
F-consistent with respect to the loss function ℓ if for any sequence of functions
𝑓𝑛 ∈ F,

R
𝜓
D
[ 𝑓𝑛] → R

𝜓,∗
D

=⇒ Rℓ
D
[𝑔 ◦ 𝑓𝑛] → R

ℓ ,∗
D

(2.4)

for all distributions D.

Intuitively, if a surrogate loss 𝜓 is consistent w.r.t. the target loss ℓ , we
can solve the classification problem by minimizing R

𝜓
D

instead of Rℓ
D

.
However, in practice, verifying if some surrogate loss is consistent w.r.t.
some target loss is difficult. To make this analysis easier, we use the reg-
ular notion of conditional probability, and denote �𝑦 = ℙ (y = 𝑦 |x = 𝒙).
We can now calculate the ℓ -risk for some loss function ℓ using an iterated
integral, as below

Rℓ
D
[ℎ] = 𝔼𝒙∼x

[
𝐾∑
𝑦=1

�𝑦 (𝒙) ℓ (𝑦, ℎ (𝒙))
]
= 𝔼𝒙∼x

[
𝜼 (𝒙)T · ℓ (ℎ (𝒙))

]
, (2.5)

where

𝜼(𝒙) = [�1(𝒙), �2(𝒙), . . . , �𝐾(𝒙)]T , and

ℓ(ℎ(𝒙)) = [ℓ (y = 1, ℎ(𝒙)) , ℓ (y = 2, ℎ(𝒙)) , . . . , ℓ (y = K, ℎ(𝒙))]T.

The quantity 𝜼 (𝒙)T · ℓ (ℎ (𝒙)) is of crucial importance to us that it has
a special name. We call it inner ℓ -risk, and denote it as Cℓ

𝜼(𝒙),𝒙[ℎ]. We
formalize it in Definition 2.1.2.
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5: Note that it’s not necessarily true in
all cases.

6: For a complete proof, we refer the
reader to Steinwart (2007).

7: Note that realizability trivially holds
when H is the hypothesis class of all
measurable functions.

8: A surrogate loss 𝜓 is said to be cali-
brated with respect to the target loss ℓ
if successfully minimizing 𝜓 results in a
classifier 𝑓 with suitable decoding func-
tion 𝑔 whose inner ℓ -risk is close to the
Bayes inner ℓ -risk for each 𝒙 ∈ X.

Definition 2.1.2 (Inner ℓ -risk and Bayes inner ℓ -risk). For a given loss
function ℓ and a prediction function ℎ ∈ H, and ∀𝜼 ∈ [0, 1]K, and ∀𝒙 ∈ X,
the quantity

Cℓ𝜼(𝒙),𝒙[ℎ] := 𝜼 (𝒙)T · ℓ (ℎ (𝒙))

is known as the inner ℓ -risk. Similarly, we have minimal inner ℓ -risk,

C
ℓ ,∗
𝜼(𝒙),𝒙 := inf

ℎ∈H
Cℓ𝜼(𝒙),𝒙[ℎ].

It’s worth reiterating that Rℓ
D
[ℎ] = 𝔼𝒙∈x[Cℓ𝜼(𝒙),𝒙[ℎ]]. The next question

that will make our analysis of studying if some surrogate loss is consistent
w.r.t. to some target loss is under what conditions it also holds true that
R
ℓ ,∗
D

= 𝔼𝒙∈x[Cℓ ,∗𝜼(𝒙),𝒙]?
5 An additional assumption we need for it to hold

is that of minimizability, as defined below in Definition 2.1.3.

Definition 2.1.3 (Minimizable loss function). Given a distribution D over
X× Y, a loss function ℓ , and a hypothesis class H, we call ℓ D-minimizable
if for all 𝜖 > 0, ∃ℎ𝜖 ∈ H such that for all 𝒙 ∈ X, we have

Cℓ𝜼(𝒙),𝒙[ℎ𝜖] < C
ℓ ,∗
𝜼(𝒙),𝒙 + 𝜖,

where 𝜼(𝒙) is defined as before.

For a minimizable loss function ℓ , one can prove that 𝒙 ↦→ C
ℓ ,∗
𝜼(𝒙),𝒙 is

a measurable function, and it would hold true that Rℓ ,∗
D

= 𝔼𝒙∈x[Cℓ ,∗𝜼(𝒙),𝒙].
6 When the loss function ℓ is D− 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑏𝑙𝑒 for some hypothesis
class H, we call it minimizability. It is easy to see that minimizability
trivially holds for all the hypothesis class H that are realizable (i.e. the
Bayes optimal function ℎ∗ belongs to H).7 Minimizable loss functions
are convenient for our classification problem as they enable pointwise
minimization of Cℓ

𝜼(𝒙),𝒙 for each 𝒙 ∈ X, in order to achieve R
ℓ ,∗
D

. They
also give us a powerful tool to establish the consistency of a surrogate
loss w.r.t. the target loss. This tool is called the calibration of a surrogate
loss w.r.t. the target loss, and it is formally defined in Definition 2.1.4.

Definition 2.1.4 (F-Calibration). For some surrogate prediction space
V ⊆ ℝK̂ and a decoding function 𝑔 : V→ Ŷ, a surrogate loss function
𝜓 : Y× V→ ℝ+ is said to be F-calibrated with respect to the loss function
ℓ : Y× Ŷ→ ℝ+ if, ∀𝜖 > 0, ∀𝜼 ∈ [0, 1]K, ∀𝒙 ∈ X, ∃𝛿 > 0 such that for
any function 𝑓 ∈ F

C
𝜓
𝜼,𝒙[ 𝑓 ] < C

𝜓,∗
𝜼,𝒙 + 𝛿 =⇒ Cℓ𝜼,𝒙[𝑔 ◦ 𝑓 ] < C

ℓ ,∗
𝜼,𝒙 + 𝜖.

Intuitively, 𝜓 is F-calibrated w.r.t. ℓ if for any given threshold 𝜖 > 0, there
exists 𝛿 > 0 such that every 𝑓 ∈ F that approximates C

𝜓,∗
𝜼,𝒙 upto 𝛿, also

approximates C
ℓ ,∗
𝜼,𝒙 upto the target level 𝜖. In other words, F-calibration

guarantees that the convergence C
𝜓
𝜼,𝒙[ 𝑓 ] → C

𝜓,∗
𝜼,𝒙 implies the desired

convergence Cℓ𝜼,𝒙[𝑔 ◦ 𝑓 ] → C
ℓ ,∗
𝜼,𝒙 for each 𝒙 ∈ X. Thus, it is analogous to

the consistency property of a surrogate loss except for each 𝒙 ∈ X.8
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F-Calibration is a necessary condition for F-Consistency. However, when we
are working with minimizable loss functions, one can see that F-Calibration
also implies F-Consistency. Thus, besides pointwise minimization of Cℓ

𝜼(𝒙),𝒙
to achieve R

ℓ ,∗
D

, minimizable loss functions also enable one to pointwisely
verify the convergence Cℓ𝜼,𝒙[𝑔 ◦ 𝑓 ] → C

ℓ ,∗
𝜼,𝒙 in order to guarantee the

desired convergence Rℓ
D
[𝑔 ◦ 𝑓 ] → R

ℓ ,∗
D

. And the notion of F-Calibration
allows us to pointwisely establish the convergence Cℓ𝜼,𝒙[𝑔 ◦ 𝑓 ] → C

ℓ ,∗
𝜼,𝒙

when the classification problem is solved by employing some surrogate
loss 𝜓. These ideas will be central to this thesis in the later chapters. In
this next section, we look at Binary classification — a specific case of a
general classification problem.

2.2 Binary Classification

We continue the notation and the setting from the last section. For binary
classification, without loss of generality, we take Y= {−1, 1}, and here
we consider Ŷ = {−1, 1} as well (i.e. the output label space and the
prediction label space are same). We aim to find a prediction function
ℎ : X→ Y, and we evaluate its performance via ℓ0−1 : Y× Ŷ→ {0, 1}.
In this setting, one can write down the prediction function ℎ∗

D
that

achieves the Bayes ℓ -risk, and we state it formally in Lemma 2.2.1.

Lemma 2.2.1 For a probability distribution D over X× {−1, 1}, and a
function ℎ∗

D
: X→ {−1, 1} defined as

ℎ∗D (𝒙) =
{

1, if ℙ (y = 1|x = 𝒙) ≥ 1
2

−1, otherwise,

then ℎ∗
D

attains the Bayes ℓ -risk, i.e. for any other prediction function
ℎ : X→ {−1, 1}, it holds that Rℓ0−1

D
[ℎ∗

D
] ≤ R

ℓ0−1
D

[ℎ].

For the proof of lemma 2.2.1, see Appendix A.1.1. We call ℎ∗
D

as the Bayes
optimal binary classifier. Unfortunately, we assume D is unknown (and thus
ℙ (y = 1|x = 𝒙) is also unknown). Thus, we cannot use this to solve the
binary classification problem. So, we take a machine learning perspective
and aim to learn a prediction function ℎ that closely approximates ℎ∗

D
.

As for the reasons mentioned in the last section, we employ a surrogate
loss 𝜓 : {−1, 1} × V→ ℝ+ on some surrogate prediction space V⊆ ℝ.
The calibration of binary surrogate losses w.r.t. ℓ0−1 is well-studied in the
literature, and we state one important result in Definition 2.2.1.

Definition 2.2.1 (Bartlett et al. (2006)). For a surrogate prediction space
V⊆ ℝ and a prediction function 𝑓 : X→ V, we say a binary classification
surrogate loss 𝜓 : {−1, 1} × V→ ℝ+ is classification-calibrated if, for any
� ≠ 1

2 , we have

inf
𝑓 (𝒙)·(�(𝒙)− 1

2 )≤0
C
𝜓
�(𝒙),𝒙[ 𝑓 ] > inf

𝑓 (𝒙)
C
𝜓
�(𝒙),𝒙[ 𝑓 ], (2.6)
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9: The sign function is defined as:

sign(𝒙) =
{

1, if 𝒙 ≥ 0
−1, if 𝒙 < 0

where �(𝑥) := ℙ(y = 1|x = 𝒙).

This definition simply states that for a function 𝑓 ∗ returned by a classi-
fication algorithm that minimizes C

𝜓
�(𝑥),𝒙 for a surrogate loss function

𝜓 calibrated w.r.t. ℓ0−1, sign ( 𝑓 ∗ (𝒙)) corresponds to sign
(
� (𝒙) − 1

2
)

where
sign : V→ {−1, 1}, 9 i.e. the decoding function 𝑔 in this case is the sign
function. In other words, minimizing C

𝜓
�(𝒙),𝒙 over the surrogate space C

gives the Bayes optimal binary classifier.

The above result should be unsurprising given how we defined the
calibration of a surrogate loss w.r.t. some target loss in the previous section.
However, we stated it explicitly as this result will be central to the main
contribution of this thesis. In the next section, we discuss a special class of
binary surrogate losses, called class probability estimation losses.

2.3 Binary Proper Losses and Proper Composite
Surrogate Losses

In last section, we considered the surrogate prediction space V ⊆ ℝ.
In this section, we first consider a special class of loss functions, called
binary class probability estimation (CPE) losses, where V= [0, 1]. We
continue to follow the notation from previous sections. However, to stress
upon this specific V, we work directly in the surrogate space and drop
dependencies on 𝒙, and the prediction function 𝑓 in our notation. Instead
of using Cℓ

�(𝒙),𝒙[ 𝑓 ] = � (𝒙) ℓ (y = 1, 𝑓 (𝒙)) + (1 − � (𝒙)) ℓ (y = −1, 𝑓 (𝒙)),
we simplify the notation and rewrite it as Cℓ

�(𝒙),𝒙[ 𝑓 ] = Cℓ
�(𝒙) (�̂�) , where

�̂� = 𝑓 (𝒙). We further simplify it and replace � (𝒙) by 𝑝 ∈ [0, 1] and denote
the inner ℓ -risk as Cℓ𝑝 (𝑣) to make it more general. With this notation, we
define Proper loss in Definition 2.3.1.

Definition 2.3.1 (Binary Proper Loss function). A binary class probability
estimation (CPE) loss function ℓ : {−1, 1} × [0, 1] → ℝ+, is called a proper
loss if

Cℓ𝑝 (�̂�) ≥ Cℓ𝑝 (𝑝) , ∀𝑝, �̂� ∈ [0, 1], �̂� ≠ 𝑝. (2.7)

We call ℓ a strictly proper loss function when the above inequality is strict.

Intuitively, the above definition means that a proper loss function enables
class probability estimation. This means that the minimizer of Cℓ𝑝(�̂�)
recovers true probability. More formally,

∀𝑝, �̂� ∈ [0, 1] 𝑝 ∈ arg min
�̂�∈[0,1]

Cℓ𝑝(�̂�).

And when the above minimizer is unique ∀𝑝 ∈ [0, 1], we call ℓ a strictly
proper loss function. Thus, for binary classification, if we employ a strictly
proper loss function in the surrogate prediction space V = [0, 1], and
minimize Cℓ

�(𝒙) ( 𝑓 (𝒙)), the prediction function 𝑓 ∗ that we get estimates
class probability �(𝒙) for each 𝒙 ∈ X, i.e. �(𝒙) = 𝑓 ∗ (𝒙).
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Figure 2.1: Link function for the logistic loss.
We can see that it is a strictly increasing
function of 𝑝 ∈ [0, 1].

Can we extend this idea of class probability estimation to a general
surrogate space V⊆ ℝ?

A positive answer to the above question is given by binary proper composite
loss functions. This is done by employing a function called the link function
γ : [0, 1] → V, and composing a prediction function operating on the
probability estimation surrogate space V1 = [0, 1] with this link function
γ to get to the general surrogate space V⊆ ℝ. We define binary proper
composite loss function more formally in Definition 2.3.2.

Definition 2.3.2 (Binary proper composite loss function). Given a surrogate
space V ⊆ ℝ, a binary surrogate loss function 𝜓 : {−1, 1} × V→ ℝ+, a
proper loss function ℓ : {−1, 1} × [0, 1] → ℝ+, and a strictly increasing
link function γ : [0, 1] → V, we call 𝜓 a binary proper composite surrogate
loss function if

𝜓 (𝑦, 𝑣) = ℓ
(
𝑦, γ−1 (𝑣)

)
, 𝑣 ∈ V. (2.8)

And we call 𝜓 a strictly proper composite loss function when ℓ is a strictly
proper loss function.

This now allows us to extend the ideas of properness to any surrogate pre-
diction space. Specifically, if we learn a prediction function 𝑓 ∗ by minimiz-
ing C

𝜓
𝑝 ( 𝑓 (𝒙)) where 𝜓 is a binary proper composite surrogate loss func-

tion with an increasing link function γ, then by definition we have that

∀𝑝 ∈ [0, 1] γ (𝑝) ∈ arg min
𝑓 (𝒙)∈V

C
𝜓
𝑝 ( 𝑓 (𝒙)) .

Similar to before, when the above minimizer is unique ∀𝑝 ∈ [0, 1], we
call 𝜓 a strictly proper composite loss function. Binary proper composite
losses are widely studied in the literature (Reid and Williamson, 2009;
Reid and Williamson, 2010; Buja et al., 2005). The focus of this thesis
is strictly proper composite loss functions, as they are also classification-
calibrated (Definition 2.2.1) surrogate functions for binary classification
(Reid and Williamson, 2010). We give examples of some strictly proper
composite surrogates in Table Section 2.3.

Name 𝜓 V γ γ−1

Logistic log (1 + e−𝑦𝑣) ℝ log
(
𝑝

1−𝑝

)
1

1+e−𝑣

Exponential e−𝑦𝑣 ℝ 1
2 log

(
𝑝

1−𝑝

)
1

1+e−2𝑣

Squared (1 − 𝑦𝑣)2 [−1, 1] 2𝑝 − 1 𝑣+1
2

Table 2.1: Examples of few binary strictly
proper composite loss functions. Vdenotes
surrogate prediction space, 𝜓 : {−1, 1} ×
V→ ℝ+ is the surrogate loss function,
γ : [0, 1] → ℝ is the link function, and
γ−1 : V→ [0, 1] is the inverse link func-
tion.

We conclude this section by illustrating the binary classification problem
using Logistic Loss in Example 2.3.1.

Example 2.3.1 For an input space X, the output space Y = {−1, 1}
and the distribution D over X× Y, the goal in binary classification
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is to learn a mapping ℎ : X→ Ywith minimum ℓ0−1-risk R
ℓ0−1
D

[ℎ],
where ℓ0−1 = 𝕀[𝑦 = ℎ(𝒙)], (𝒙 , 𝑦) ∼ DN.

Obviously, minimizing R
ℓ0−1
D

[ℎ] is computationally infeasible. So,
we employ a logistic loss function as the surrogate loss function
𝜓 : Y× V→ ℝ+, where 𝜓 : (𝑦, 𝑣) ↦→ log (1 + e−𝑦𝑣) over the surrogate
prediction space 𝑣 ∈ V, V= ℝ. We now minimize R

𝜓
D
[ 𝑓 ] instead to

achieve R𝜓,∗
D

, and find a surrogate prediction function 𝑓 ∗ : X→ V. As-
suming minimizability, we can use the pointwise approach to minimize
C
𝜓
�(𝑥),𝒙[ 𝑓 ],∀𝒙 ∈ X to this end.

Now, we know that logistic loss is a classification-calibrated loss function
for ℓ0−1, so we can deduce that 𝑓 ∗ returned by such a classification
algorithm together with a suitable decoding function 𝑔 : V→ {−1, 1}
(in this case, the sign function) correspond to the Bayes optimal binary
classifier, i.e. we have

ℎ(𝒙) = sign ( 𝑓 ∗ (𝒙)) = sign
(
� (𝒙) − 1

2

)
, ∀𝒙 ∈ X. (2.9)

Furthermore, we know that logistic loss is also a strictly proper com-
posite loss function with the inverse link function γ−1 : V→ [0, 1],
γ−1 : 𝑣 ↦→ 1

1+e−𝑣 . Thus, we know that γ−1 ( 𝑓 ∗ (𝒙)) estimates the class
probability �(𝒙),∀𝒙 ∈ X. Combining everything, we can write down
the final predictor as follows:

ℎ(𝒙) = sign ( 𝑓 ∗ (𝒙)) = sign
(
γ−1 ( 𝑓 ∗ (𝒙)) − 1

2

)
, ∀𝒙 ∈ X. (2.10)

2.4 Code Based Surrogates for Multiclass
Classification

This section reviews a general strategy to design surrogate loss functions.
In particular, we study the output code-based methods where a coding
matrix is used to decompose the multi-class classification problem into
multiple binary classification problems. Mention could be made of error-
correcting coding mechanism (Dietterich and Bakiri, 1995; Langford et al.,
2005; Allwein et al., 2001). We briefly describe the setup here and refer the
reader to Ramaswamy et al. (2014) for full details. The goal of such a code
based mechanism is to use a code matrix M = {−1, 1, 0}K×K̂ to decompose
a K̂-class classification problem into K̂ binary classification problems. Fol-
lowing the notation from Section 2.1, we use M to split the training sample
𝑆 = {(𝒙𝑖 , 𝑦𝑖)}N

𝑖=1 into K̂-training samples �̃� 𝑗 for each 𝑗 ∈ [K̂] such that �̃� 𝑗 =
{
(
𝒙𝑖 ,M𝑦𝑖 , 𝑗

)
; 𝑖 ∈ [1,N],M𝑦𝑖 , 𝑗 ≠ 0}. Thus, each �̃� 𝑗 is a subset from the orig-

inal 𝑆with output labels replaced by the binary labels provided by M. For
V⊆ ℝ, we use these �̃� 𝑗 to learn a K̂-binary classifiers 𝑓𝑗 : X→ V. Thus,
for each 𝒙 ∈ X, we get a prediction 𝑓 (𝒙) =

[
𝑓1 (𝒙) , . . . , 𝑓K̂ (𝒙)

]
∈ ℝK̂. We

then a use a suitable decoding function to map 𝑓 (𝒙) to the original predic-
tion space Ŷ. If we use some suitable surrogate loss ℓ : {−1, 1}×V→ ℝ+,
then intuitively, the whole code matrix based mechanism can be viewed
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as learning a function 𝑓 : X→ VK̂ by minimizing a surrogate multiclass
classification loss ψ : Y× Vk̂ → ℝ+ given as

ψ (𝑦, v) =
K̂∑
𝑗=1

(
𝕀
[
M𝑦 𝑗 = 1

]
ℓ
(
1, 𝑣 𝑗

)
+ 𝕀

[
M𝑦 𝑗 = −1

]
ℓ
(
−1, 𝑣 𝑗

) )
. (2.11)

Obviously, we care about the consistency of such a surrogate loss ψ for
a successful classification algorithm. Ramaswamy et al. (2014) analyze
the conditions related to consistency and calibration of such a surrogate
loss for general losses. Next, we give a simple example to illustrate the
procedure described above.

Example 2.4.1 Consider Y= Ŷ= [K]. Define M = {−1, 1}K×K such
that M𝑦 𝑗 = 1 if 𝑦 = 𝑗, otherwise M𝑦 𝑗 = −1. In words, M has 1 on
diagonal entries and -1 everywhere else. For this M, it’s easy to see that

ϕ(𝑦, 𝑣) = ℓ (1, 𝑣𝑦) +
K∑

𝑗=1, 𝑗≠𝑦
ℓ (−1, 𝑣 𝑗).

Taking ℓ to be a binary logistic loss, we have:

ϕ(𝑦, 𝑣) = log(1 + e−𝑣𝑦 ) +
K∑

𝑗=1, 𝑗≠𝑦
log(1 + e𝑣 𝑗 ).

or,

ϕ(𝑦, 𝑣) = − log
(

1
1 + e−𝑣𝑦

)
−

K∑
𝑗=1, 𝑗≠𝑦

log
(

1
1 + e𝑣 𝑗

)
.

Thus, we recovered a common one-vs-all formulation of the multi-class
classification problem.

Summary of the Chapter

In this chapter, we study the general classification problem and the use
of surrogate loss functions to solve it. We define the notions consistency
and calibration of the surrogate loss with respect to the target loss.
We then study a class of surrogate losses called proper composite
losses, along with a general procedure to design surrogate losses.



1: Thus, the rejector can be seen as a meta-
classifier, determining which inputs are
appropriate to pass to the expert.

Learning to Defer 3
— Homer began his story in medias res, which means in the middle of the thing. To be in medias res, thought Billy, there

should be just as many important things that have happened as important things that haven’t happened yet.

— Amor Towles, The Lincoln Highway

In this chapter, we formalize Learning to Defer (L2D) and study it in
light of the ideas we discussed in the last chapter. Our focus will be on
the classifier-rejector (Cortes et al., 2016a; Cortes et al., 2016b) approaches
to L2D. We will also state the softmax surrogate loss function (Mozannar
and Sontag, 2020) for L2D, which is also the only consistent surrogate loss
function for L2D. We continue using the notation from the last chapter.

Note on Contributions: This chapter is a retrospective formalization of
learning to defer that draws ideas from the excellent works of Mozannar
and Sontag (2020) and Chow (1957). However, there are some crucial
differences as well. For example, Mozannar and Sontag (2020) argue the
rationale for deferring only if the risk of the expert making the prediction
is less than the risk of the classifier. Based on this motivation, they derive
the Bayes optimal rejector and classifier. However, we consider the prob-
lem in a more general setting and theoretically prove that comparing the
risk of the classifier and the expert provides an optimal rule for learning
to defer (refer to Theorem 3.1.1 and Corollary 3.1.2).

3.1 Learning to Defer as a General Classification
Problem

In L2D, besides the usual input space X, output label space Y, output
prediction label space Ŷ, and the distribution Dover X×Y, we also have
expert’s label space M. We always assume that M = Y. Let m denote
the random variable for the expert’s predictions, and we denote its
realizations by 𝑚. We assume the expert’s predictions are sampled from
some expert distribution, and we make a simplifying assumption that
𝑚 ∼ ℙ(m|x, y). And we assume access to the dataset 𝑆 = {𝒙𝑖 , 𝑦𝑖 , 𝑚𝑖}N

𝑖=1.
In a general classifier-rejector approach to L2D, the goal is to learn two
mappings: the classifier, ℎ : X→ Ŷ, and the rejector, 𝑟 : X→ {0, 1}. When
𝑟(𝒙) = 0, the classifier makes the prediction in the typical way, i.e. ℎ(𝒙).
When 𝑟(𝒙) = 1, the classifier abstains and allows the expert to provide the
prediction 𝑚 ∼ ℙ (m|x = 𝒙 , y = 𝑦). 1 The goal of the L2D classification
problem is to find these functions, ℎ, and 𝑟. We obviously employ loss
functions ℓclf : Y×Ŷ→ ℝ+ and ℓexp : Y×M→ ℝ+ to evaluate the quality
of the functions ℎ and 𝑟 respectively. We use the rejector 𝑟 := 𝑟 (𝒙) to define
the full loss function 𝐿 : Y× Ŷ× {0, 1} ×M→ ℝ+ for L2D as follows,

𝐿 (𝑦, �̂�, 𝑟 , 𝑚) = (1 − 𝑟) · ℓclf (𝑦, �̂�) + 𝑟 · ℓexp (𝑦, 𝑚) . (3.1)
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As with any other classification problem, the goal in L2D is to find ℎ∗

and 𝑟∗ with minimum 𝐿-risk, which we write again for completion,

R𝐿
D,m[𝑟, ℎ] = 𝔼𝒙∼x,𝑦∼y,𝑚∼m [ℓ (𝑦, ℎ (𝒙) , 𝑟 (𝒙) , 𝑚)] .

And we aim to attain the Bayes 𝐿-risk, written for completion as below:

R
𝐿,∗
D,m = inf

𝑟:X→{0,1}
ℎ:X→Ŷ

R𝐿
D,m[𝑟, ℎ].

What classifier ℎ∗ and rejector 𝑟∗ attain the Bayes 𝐿-risk R𝐿,∗
D,m for L2D?

To answer the above question, we frame L2D as a general classification
problem with output label space Y= [𝐾], and the output prediction label
space Y⊥ = Y∪ {⊥} where the prediction label ⊥ means the decision of
deferral. We use the loss function 𝐿 defined in Equation 3.1. Thus, the
prediction function ℎ : X→ Y⊥ returned by an algorithm solving this
general classification problem is mapping an input 𝒙 ∈ X to either one
of the output labels or to the deferral prediction, in which case, the final
prediction will be provided by the expert. In this setting, we can write
the closed-form expressions for ℎ∗ and 𝑟∗, as Theorem 3.1.1 establishes.
We call ℎ∗ and 𝑟∗ as the Bayes optimal classifier and rejector respectively.

Theorem 3.1.1 For the classifier loss function ℓclf : Y× Ŷ→ ℝ+, the expert
loss function ℓexp : Y×M→ ℝ+, for each �̂� ∈ Ydefine the quantity

𝑍 �̂�(𝒙) =
∑
𝑦∈Y

(
𝑤𝑦,�̂� − 𝑤𝑦,⊥

)
ℙ (y = 𝑦 |x = 𝒙)ℙ(x = 𝒙), (3.2)

where

𝑤𝑦,�̂� := ℓclf (𝑦, �̂�) , and

𝑤𝑦,⊥ :=
∑
𝑚∈M

ℓexp(𝑦, 𝑚) · ℙ (m = 𝑚 |x = 𝒙 , y = 𝑦) ,

then the Bayes optimal classifier ℎ∗ and rejector 𝑟∗ are given as

ℎ∗ (𝒙) = arg min
�̂�∈Y

𝑍 �̂�(𝒙)

𝑟∗ (𝒙) = 𝕀
[
𝑍 �̂� (𝒙) ≥ 0;∀�̂� ∈ Y

]
.

We provide the proof of Theorem 3.1.1 in Appendix A.1.2. We further
simplify the Bayes optimal rejector for L2D in Corollary 3.1.2.

Corollary 3.1.2 The Bayes optimal rejector 𝑟∗ for Learning to Defer (L2D) is
given as:

𝑟∗ (𝒙) =
{

1 if 𝔼y|x [ℓclf (�̂� , 𝑦)] ≥ 𝔼y|x𝔼m|x,y
[
ℓexp (𝑚, 𝑦)

]
∀�̂� ∈ Y

0 otherwise
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2: Intuitively, it makes sense to ask for
the expert’s opinion when the classi-
fier’s prediction is comparatively riskier.
This is the motivation for the learning
to defer framework, especially in safety-
critical applications like healthcare, au-
tonomous driving, etc.

Figure 3.1: Operationalization of the L2D
framework. The optimal rejection rule is
to compare the expert’s correctness prob-
ability 𝑝m (x) := ℙ (m = y|x) with the
classifier’s confidences �𝑦 (𝒙), and defer
if former is greater than �𝑦 (𝒙) ∀𝑦 ∈ Y.

The above statement gives us a simple operationalization of learning to
defer framework. It states that the optimal rejection rule is to compare
the classifier’s risk and the expert’s risk for each sample 𝒙 ∈ X, and
then defer to the expert if the former is greater than the latter for each
prediction �̂� ∈ Y. 2

The above results hold for general losses, ℓclf and ℓexp. However, we pay
special attention to the canonical 0 − 1 loss function as defined in the last
chapter. For completion, we rewrite L2D loss function from Equation 3.1
for 0 − 1 loss function below,

𝐿0−1 (𝑦, �̂�, 𝑟 , 𝑚) = (1 − 𝑟) · 𝕀 [𝑦 ≠ �̂�] + 𝑟 · 𝕀 [𝑦 ≠ 𝑚] . (3.3)

In this special case, getting a further simplified form of ℎ∗ and 𝑟∗ is an
easy exercise. Since this form will be the main focus of this thesis, we
state it as a definition in Definition 3.1.1.

Definition 3.1.1 (Bayes Optimal rejector and classifier for 0 − 1 L2D loss).
For the 𝐿0−1 L2D loss defined in Equation 3.3, the Bayes optimal classifier ℎ∗
and rejector 𝑟∗ are given as

ℎ∗(𝒙) = arg max
𝑦∈Y

ℙ(y = 𝑦 |x = 𝒙),

𝑟∗(𝒙) = 𝕀

[
ℙ(m = y|x = 𝒙) ≥ max

𝑦∈Y
ℙ(y = 𝑦 |x = 𝒙)

]
,

where ℙ(m = y|x = 𝒙) is the probability that the expert is correct, and
ℙ(y = 𝑦 |x = 𝒙) is the regular class probability.

Thus, for 𝐿0−1 L2D loss, the optimal rejection rule says to compare the
confidences of the classifier and the expert. And if the expert has higher
confidence in providing the correct prediction, we defer the sample to
the expert. Otherwise, the classifier makes predictions in a typical way.

Similar to the binary classification problem in the last chapter, we don’t
knowℙ(m = y|x = 𝒙) andℙ(y = 𝑦 |x = 𝒙). Thus, we again take a machine
learning perspective and aim to learn a classifier and a rejector pair (ℎ, 𝑟)
that approximates (ℎ∗ , 𝑟∗). And what’s now appearing to be a recurring
theme, it’s computationally infeasible to minimize R

𝐿0−1
D,m[𝑟, ℎ]. So, we

need to employ a surrogate loss function over some surrogate prediction
space and a suitable decoding function. Quite obviously now, we want
such a surrogate loss function to be consistent w.r.t. 𝐿0−1. Fortunately, such
a surrogate loss function is proposed in the literature, and we describe
it in the next section.

3.2 Softmax Surrogate Loss for Learning to
Defer

Mozannar and Sontag (2020) proposed the first consistent surrogate loss
for 𝐿0−1. They accomplish this by considering learning to defer as a general
classification problem with the output prediction label space Y⊥ as
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3: Softmax function, 𝒔 : ℝK → ΔK−1,
where ΔK−1 denotes the K − 1 dimen-
sional probability simplex, is given as:

𝒔 (𝒙) = [𝑠 (𝒙1) , . . . , 𝑠 (𝒙K)]

𝑠 (𝒙𝑖) =
exp{𝒙𝑖}∑

𝑗∈[K] exp{𝒙 𝑗}
.

4: In practice, Mozannar and Sontag
(2020) introduce a hyperparameter 𝛼 ∈
ℝ+ that re-weights the classifier loss
when the expert is correct. Using 𝛼 < 1
encourages a higher degree of division of
labor between classifier and expert. Yet,
for all 𝛼 ≠ 1, the surrogate is no longer
consistent.

described in the last section. Secondly, Mozannar and Sontag (2020) use a
reduction to cost sensitive learning (Ling and Sheng, 2010) that ultimately
resembles the cross-entropy loss for a softmax parameterization 3. The
goal is to learn a surrogate prediction function 𝑓 : X → ℝK+1 with
a suitable decoding function 𝑔 : ℝ → Y⊥. The surrogate prediction
function 𝑓 can be considered component-wise, and specify 𝑓𝑘 : X ↦→ ℝ

for 𝑘 ∈ [1,K] where 𝑘 denotes the class index, and let 𝑓⊥ : X ↦→ ℝ

denotes the deferral (⊥) option. Thus, each 𝑓𝑖 , 𝑖 ∈ [K] ∪ {⊥} can be
considered as a prediction function operating in the surrogate space
ℝ. Mozannar and Sontag (2020) proposed the surrogate loss function
ϕSM : ℝK+1 × Y× M → ℝ+. The proposed softmax-parameterized
surrogate loss is given as:

ϕSM( 𝑓1 , . . . , 𝑓K , 𝑓⊥; 𝑦, 𝑚) =

− log
( exp{ 𝑓𝑦(𝒙)}∑

𝑦′∈Y⊥ exp{ 𝑓𝑦′(𝒙)}

)
− 𝕀[𝑚 = 𝑦] log

(
exp{ 𝑓⊥(𝒙)}∑

𝑦′∈Y⊥ exp{ 𝑓𝑦′(𝒙)}

)
.

(3.4)

The intuition is that the first term maximizes the function 𝑓𝑘 associated
with the true label. The second term then maximizes the rejection function
𝑓⊥ but only if the expert’s prediction is correct. The decoding function 𝑔 is
the simple arg max function, i.e. 𝑔 ◦ 𝑓 : 𝒙 ↦→ arg max𝑖∈Y⊥ 𝑓𝑖(𝒙). Thus, the
rejector 𝑟(𝒙) = 𝕀 [𝑔 ◦ 𝑓 (𝒙) = K + 1] , and the classifier ℎ(𝒙) = 𝑔 ◦ 𝑓 (𝒙) if
𝑟(𝒙) = 0. 4

The function ϕSM is the first convex (in 𝑓 ) consistent surrogate loss
proposed for L2D (Mozannar and Sontag, 2020). Convexity eases the
optimization problem, and the consistency implies that minimizers of
R
ϕSM
D,m[ 𝑓 ] over all measurable functions 𝑓 agree with the Bayes optimal

solution. Specifically, this means that the minimizer 𝑓 ∗ =
(
𝑓 ∗1 , . . . , 𝑓

∗
𝐾
, 𝑓 ∗⊥

)
of RϕSM

D,m[ 𝑓 ] corresponds to the Bayes optimal rejector 𝑟∗ and classifier ℎ∗
through the composition of the decoding function 𝑔 as defined above.

How good of a forecaster the function returned by an L2D classification
algorithm working with ϕSM is?

As stated above, ϕSM gives Bayes optimal rejector and classifier. From
Definition 3.1.1, we know that that the Bayes optimal rejector and classifier
require estimates of ℙ(y = 𝑦 |x = 𝒙) and ℙ(m = 𝑚 |x = 𝒙 , y = 𝑦).
However, we would like to assert that while these estimates are sufficient
to recover the Bayes optimal rejector and classifier, they are not necessary.
Due to the comparative nature of the Bayes rule, 𝑔 ◦ 𝑓 ∗ learned by ϕSM
could agree with the Bayes rule but won’t necessarily result in correct
estimates of the above probabilities. In the next section, we will check the
forecasting abilities of this L2D system, i.e., given a function 𝑓 ∗ learned by
the L2D classification algorithm minimizing the surrogate loss ϕSM, how
good are these confidence estimates. Having good estimates would not
only add to the Bayes optimality of 𝑓 ∗, but is also a critical requirement
for the reliability, trustworthiness, and transparency of such an L2D
system, especially in safety-critical applications.

Continuing forward, when it is clear from the context, we will use the
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5: This should not be confused with the
calibration of some surrogate loss w.r.t
some target loss. To make the distinction,
we will use calibration of the confidence
estimates vs calibration of the surrogate
loss w.r.t. the target loss.

6: Check:
∑
𝑦∈Y𝛾𝑦 = 1. Also, 𝛾𝑦 ∈ [0, 1].

shorthand softmax surrogate loss to mean the function 𝑓 ∗ returned by
an L2D classification algorithm minimizing the softmax surrogate loss
function.

3.3 Problem with the Softmax Surrogate Loss

Before investigating goodness of the confidence estimates of the softmax
surrogate loss function, we need to settle two questions: a) How to get
the confidence estimates? b) How to define goodness? Fortunately, we
have a unique way to answer the question a. And a natural answer to
the question b is estimating the true confidence estimates. However, we
will use calibration of the confidence estimates5 as a measure of the said
goodness. Why we do so should be self-explanatory, simply because we
don’t know the true confidence estimates. Additionally, calibration of
the confidence estimates is a very popular metric for the reliability and
trustworthiness of a machine learning system (Vaicenavicius et al., 2019).
Next, we look at these two questions separately.

How to get the confidence estimates for the softmax surrogate loss
function ϕSM?

We saw before thatϕSM works in the surrogate prediction spaceℝK+1, and
𝑓 ∗ can be considered component-wise, i.e. 𝑓 ∗ (𝒙) =

[
𝑓 ∗1 (𝒙) , . . . , 𝑓 ∗K (𝒙) , 𝑓 ∗⊥ (𝒙)

]
,

𝑓 ∗
𝑖

: X→ ℝ. To get the confidence estimates ℙ(y = 𝑦 |x = 𝒙) for some
𝑦 ∈ Y, we employ an inverse link function 𝛾𝑦 : ℝK+1 → [0, 1]. Similarly
for ℙ(m = y|x = 𝒙), we need 𝛾m : ℝK+1 → [0, 1]. We derive these inverse
link functions in Appendix A.2.1, and write them below:

𝛾𝑦 ( 𝑓 ∗ (𝒙)) =
exp{ 𝑓 ∗𝑦 (𝒙)}∑

𝑦′∈Yexp{ 𝑓 ∗𝑦′(𝒙)}

𝛾m ( 𝑓 ∗ (𝒙)) =
exp{ 𝑓 ∗⊥(𝒙)}∑

𝑦′∈Yexp{ 𝑓 ∗𝑦′(𝒙)}

(3.5)

We can quickly verify that 𝛾𝑦 gives valid confidences. 6 Furthermore, de-
noting 𝑝⊥

(
𝑓 ∗⊥ (𝒙)

)
=

exp{ 𝑓 ∗⊥(𝒙)}∑
𝑦′∈Y⊥ exp{ 𝑓 ∗

𝑦′ (𝒙)}
, it’s quite obvious that 𝛾m ( 𝑓 ∗ (𝒙)) =

𝑝⊥( 𝑓 ∗⊥(𝒙))
1−𝑝⊥( 𝑓 ∗⊥(𝒙)) . Since 𝑝⊥ ∈ [0, 1], it’s clear that the fu of 𝛾m is [0,∞). Thus,
for 𝛾m to be a valid inverse link function, it must hold that 𝑝⊥ ∈ [0, 0.5].
This fact will be of grave importance for our answer to question b above,
so we state it explicitly in Proposition 3.3.1.

Proposition 3.3.1 For a prediction function 𝑓 ∗ of ϕSM, if ∃𝒙 ∈ X such
that 𝑝⊥

(
𝑓 ∗⊥ (𝒙)

)
> 0.5, then 𝛾m

(
𝑓 ∗⊥ (𝒙)

)
> 1. Thus, 𝛾m cannot estimate

ℙ (m = y|x = 𝒙).

It’s worth noting again that 𝛾m is a unique inverse link function to estimate
ℙ (m = y|x = 𝒙). So, in case we get these invalid confidence estimates
for ℙ(m = y|x = 𝒙), it would be due to the estimation errors in 𝑓 ∗ (𝒙).
However, this does not affect the consistency property of ϕSM w.r.t 𝐿0−1.
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As already mentioned in the last section, true confidence estimates are
sufficient to get the Bayes optimal rejector and classifier (and hence for
consistency), but they are not necessary. Rather, it would mean that the
softmax parameterization admits many solutions that do not correspond
to valid estimators for ℙ(y = m|𝒙), and yet behave according to Bayes
optimal rule. In other words, the Bayes solutions seem to be ‘fragile’ in the
sense that they require 𝑝⊥ ( 𝑓 ∗ (𝒙)) ≤ 1/2 while its true range is [0, 1].

How to define the goodness of the confidence estimates?

We use the notion of calibration of the confidence estimates as a measure
of the goodness of the confidence estimates. More specifically, we use
confidence calibration (Dawid, 1982) as a measure. The definition applies to
any general confidence estimate, however, we will define it in the context
of expert’s correctness probability 𝑝m(𝒙) := ℙ(m = y|x = 𝒙). Given 𝑝m(𝒙),
we call 𝑝m confidence-calibrated if, for any confidence level 𝑐 ∈ [0, 1], the
actual proportion of times the expert is correct is equal to 𝑐:

ℙ(m = y | 𝑝m(𝒙) = 𝑐) = 𝑐. (3.6)

This statement should hold for all possible instances 𝒙 with confidence 𝑐.
Confidence calibration is a desirable quality for a forecasting system to be
a good forecaster. Intuitively, it means that if the system says the expert has
75% chances of being correct, then the expert should actually be correct
in 75 out of those 100 cases. There are other notions of calibration of the
confidence estimates as well, for example, distribution calibration, and
classwise calibration. Since expert correctness is a binary classification
problem, distribution calibration, confidence calibration, and classwise
calibration all coincide (Vaicenavicius et al., 2019).

To quantify confidence calibration, we use a metric called expected calibra-
tion error (ECE). It is formally defined as

ECE(𝑝m) = 𝔼x |ℙ (m = y | 𝑝m(x) = 𝑐) − 𝑐 |. (3.7)

In practice, ECE is usually computed by equal-width binning of the
predictions according to the confidence level. This metric is also visualized
as plots called reliability diagrams, where for each such bin, we verify
if the calibration equation (Equation 3.7) is true or not. The difference
between the bin’s confidence and the empirical accuracy is plotted, and
this average difference is known as ECE.

Now that we have established answers to both the questions a and b, we
verify if 𝑝⊥

(
𝑓 ∗⊥ (𝒙)

)
> 0.5, holds true in practice or not.

3.3.1 Empirical Confirmation

Our goal here is to show the existence of 𝒙 ∈ X, such that 𝑝⊥
(
𝑓 ∗⊥ (𝒙)

)
>

0.5, and consequently, 𝑝m (𝒙) > 1. We use a CIFAR-10 (Krizhevsky, 2009)
simulation that is similar to Mozannar and Sontag’s (2020) CIFAR-10
experiment. We simulate expert who is assumed to have non-uniform
expertise: 75% chance of being correct on the first five classes, and 20%
(i.e. random) chance on the last five classes. We train learning to defer
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Figure 3.2: Calibration of Softmax Parameterization on CIFAR-10: Subfigure (a) reports the observed values of 𝑝m(x) on the CIFAR-10
simulation study. We find that 39.4% of test samples have 𝑝m(x) > 1 (denoted in red). Subfigure (b) reports a reliability diagram and the
expected calibration error (ECE) when 𝑝m(x) is restricted to (0, 1]. The shade of the bin color represents the proportion of samples in the
bin (darker shade, more samples). Subfigure (c) shows the distribution of risk estimates. Note the clear bias towards zero error.

7: We leave it as an exercise to verify that
the pointwise risk estimates of the expert
for 0 − 1 loss are given as 1 − 𝑝m (𝒙).

system with this expert using ϕSM. Subfigure 3.2a shows a histogram
of the values of 𝑝m(𝒙) as observed on the CIFAR-10 test set. The blue
bars represent the values less than or equal to one. The red bars show
the pathological cases greater than one. 39.4% of the test samples (3940
instances) resulted in 𝑝m(𝒙) > 1.

We also consider modifying 𝑝m(𝒙) so that all values greater than one are
rounded down to one. In this case, since now 𝑝m(𝒙) is forcibly restricted
to (0, 1], we can perform standard evaluations of confidence calibration,
i.e. plotting a reliability diagram and computing expected calibration error
(ECE) as defined in Equation 3.7.

Subfigure 3.2b shows the reliability diagram and reports the ECE for
confidence calibration when 𝑝m(𝒙) is restricted. Unsurprisingly, we
still observe that the model’s estimate of the expert’s correctness is
uncalibrated, exhibiting overconfidence. The ECE is 7.58%. Subfigure
3.2c plots the distribution of pointwise risks: 1 − 𝑝m(x). 7 Due to the
probabilities being clamped to one, we see a false mode at zero error. In
turn, the system is not transparent about the actual risk that decision-
makers would encounter.

Summary of the Chapter

We formally study the problem of multiclass learning to defer (L2D)
classification problem and analyze its Bayes optimal behavior. We
also describe the only consistent surrogate loss function w.r.t. to the
canonical 0−1 loss function proposed by Mozannar and Sontag (2020).
While the loss function is a consistent one w.r.t. the 0−1 loss function, we
show that it learns a ‘fragile’ Bayes rule, where it fails to appropriately
estimate the true confidences required for the Bayes optimal classifier
and the rejector. The estimates for the expert’s correctness confidence
are unbounded; thus, the system is not confidence calibrated.
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One-vs-All Surrogate Loss for
Learning to Defer 4

—This is where Professor Abernathe invites you to set down the story of your own adventure.
—I think we’re on it now, said Billy. — Amor Towles, The Lincoln Highway

In the last chapter, we show the ‘fragility’ of the softmax surrogate loss
for multiclass learning to defer (L2D), where it theoretically learns the
Bayes optimal rejector and classifier but does not necessarily estimate
the class probabilities and expert’s correctness probability to attain the
Bayes rule. We demonstrate that the problematic quantity is the expert’s
correctness probability, which in theory, is unbounded. In this chapter,
we propose an alternative surrogate loss function for L2D that is also
a consistent surrogate loss function w.r.t to the canonical 0 − 1 loss for
L2D. Our loss function is based on reductions using the error correcting
output codes that resemble the popular One-vs-All parameterization
(a.k.a. One-vs-Rest) in machine learning. Thus, we call our loss function
the One-vs-All (OvA) surrogate loss for L2D. We will continue using the
notation from previous chapters.

4.1 Reductions using Error Correcting Output
Codes

We also consider L2D as a general classification problem and aim to
find a function ℎ : X → Y⊥, mapping input 𝒙 ∈ X to either one
of the output labels or to the deferral decision. We note that such a
function ℎ trivially models both the rejector and the classifier for an
L2D problem, for example, the rejector 𝑟𝑐 : 𝒙 ↦→ 𝕀 [ℎ(𝒙) ∈ {⊥}], and the
classifier ℎ𝑐 : 𝒙 ↦→ ℎ(𝒙) when 𝑟𝑐(𝒙) = 0. To this end, we aim to find ℎ,
or (ℎ𝑐 , 𝑟𝑐) that minimizes R

𝐿0−1
D,m[𝑟𝑐 , ℎ𝑐], and ideally attains R

𝐿0−1 ,∗
D,m . It’s

now an obvious fact that computationally minimizing R
𝐿0−1
D,m[𝑟𝑐 , ℎ𝑐] is an

infeasible problem. So, we employ a surrogate function instead.

To derive our surrogate loss function, we follow the general framework
of reductions using error-correcting output codes (ECOC) as described
in Section 2.4 in Chapter 2 (Preliminaries). To this end, we need to
define our coding matrix M ∈ {−1, 0, 1}K×K̂. We have K̂ = K + 1, and
we define M ∈ {−1, 1}K×(K+1). The construction of M is as follows: The
K × K sub-matrix M1:K,1:K has +1 along its diagonal and −1 on the off-
diagonal. The entries in the K + 1-th column are given by the function
𝑚𝑦,K+1 = �𝑦 (m) := (−1 + 2𝕀[𝑦 = m]). Thus, our main insight is to
construct a set of ECOC matrices.

Having defined the coding matrix M, we can follow the general strategy to
decompose this classification problem into K+1 binary classification sub-
problems. More specifically, for a surrogate prediction space V⊆ ℝ, we
learn K surrogate prediction functions 𝑓𝑦 : X→ V, 𝑦 ∈ Y, and similarly
𝑓⊥ : X→ V, each of which is a binary classifier. Thus, for each 𝒙 ∈ X, we
get the prediction 𝑓 (𝒙) = [ 𝑓1(𝒙), . . . , 𝑓K(𝒙), 𝑓⊥(𝒙)] ∈ VK+1. This means
that, eventually, we are learning a prediction function 𝑓 : X→ VK+1.
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Now, if we use ϕ : {−1, 1} × V→ ℝ+ as the binary loss function to learn
these K + 1 binary classifiers, we can use M to write the closed-form
expression of the final multiclass surrogate lossψOvA : Y× VK+1 ×M→
ℝ+ this whole process eventually minimizes as follows:

ψOvA( 𝑓1 , . . . , 𝑓𝐾 , 𝑓⊥; 𝑦, 𝑚) =
ϕ[ 𝑓𝑦(𝒙)] +

∑
𝑦′∈Y,𝑦′≠𝑦

ϕ[− 𝑓𝑦′(𝒙)] +

ϕ[− 𝑓⊥(𝒙)] + 𝕀[𝑚 = 𝑦] (ϕ[ 𝑓⊥(𝒙)] − ϕ[− 𝑓⊥(𝒙)])

(4.1)

We derive the above closed-form expression in Appendix A.2.2.

4.2 One-vs-All Surrogate Loss for L2D

Our proposed One-vs-All surrogate loss for L2D is, thus, ψOvA. The
decoding function 𝑔 for a prediction function returned by an L2D clas-
sification algorithm working with ϕOvA is again the arg max function,
i.e. 𝑔 ◦ 𝑓 : 𝒙 ↦→ arg max𝑖∈Y⊥ 𝑓𝑖(𝒙). This gives us the rejector 𝑟(𝒙) =

𝕀 [𝑔 ◦ 𝑓 (𝒙) = K + 1], and the classifier ℎ(𝒙) = 𝑔 ◦ 𝑓 (𝒙) when 𝑟(𝒙) = 0.
Our formulation is, thus, the OvA analog of Mozannar and Sontag’s (2020)
softmax-based loss. The 𝑓 -functions are entirely the same; the difference is
in how they are combined. The classifier and rejector are computed exactly
the same as in the softmax case. We can also introduce a re-weighting pa-
rameter that is analogous to 𝛼 in Mozannar and Sontag’s (2020) loss by re-
weighting the first two terms in Equation 4.1 when the expert is correct.

We next prove that ψOvA is a consistent surrogate loss w.r.t. 𝐿0−1 for
the L2D classification problem. As stated above, ψOvA can be seen as a
one-vs-all analog of ϕSM. However, the argument for consistency of ψOvA
is non-trivial. We cannot construct our consistency proof in the same
direct manner as Mozannar and Sontag (2020). When we differentiate
with respect to a particular 𝑓 (𝒙), the other 𝑓 ’s drop from the OvA loss
(but not from the softmax loss). Thus, to analyse the consistency of ψOvA
w.r.t. 𝐿0−1, we first study the calibration of the surrogate loss ψOvA w.r.t.
the target los 𝐿0−1. We can show that ψOvA is calibrated w.r.t. 𝐿0−1 as
Theorem 4.2.1 establishes.

Theorem 4.2.1 For a strictly proper binary composite loss ϕ with a well-
defined continuous inverse link function γ−1, ψOvA (Equation 4.1) is a
calibrated surrogate for the canonical 0−1 learning to defer loss (Equation 3.3)).

This is our main result, and we prove it in Appendix A.1.4. We show that
the pointwise minimizer 𝑓 ∗ of the inner ψOvA-risk C

ψOvA
D,m [ 𝑓 ] together with

the decoding function 𝑔 as defined above, agree with the Bayes optimal
classifier and rejector pair. Having established the calibration of ψOvA
w.r.t 𝐿0−1, the next corollary gives us the result.

Corollary 4.2.2 Assume that 𝑓 ∈ F, where F is the hypothesis class of all
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measurable functions. Minimizability (Definition 2.1.3) is then satisfied for
ψOvA, and it follows thatψOvA is a consistent surrogate for the 0−1 learning
to defer loss (Equation 3.3).

Thus, ψOvA is also a consistent loss function for L2D. This means that
the minimizer of the proposed loss function ψOvA over all measurable
functions agrees with the Bayes optimal classifier and rejector (Definition
3.1.1). Our result holds for all strictly binary proper composite loss
functions ϕ (see Table Section 2.3 on page 9 for a few examples).

We now describe how to get the confidence estimates for ℙ (y = m|x = 𝒙)
and ℙ (y = 𝑦 |x = 𝒙) for each 𝑦 ∈ Y for the surrogate prediction function
𝑓 ∗ returned by an L2D classification algorithm working withψOvA. How-
ever, this is trivial now due to the existence of well-defined inverse link
function γ−1 for the proper composite loss functionϕ. We simply have:

𝛾𝑦 ( 𝑓 ∗ (𝒙)) = γ−1 ( 𝑓 ∗ (𝒙))
𝛾m ( 𝑓 ∗ (𝒙)) = γ−1 ( 𝑓 ∗ (𝒙)) .

(4.2)

Here, we define,

𝛾𝑦 ( 𝑓 ∗ (𝒙)) = γ−1 :
(
𝑓 ∗1 (𝒙) , . . . , 𝑓 ∗K (𝒙) , 𝑓 ∗⊥ (𝒙)

)
↦→ γ−1

(
𝑓 ∗𝑦 (𝒙)

)
, 𝑦 ∈ Y⊥.

One thing we can immediately conclude is that both 𝛾𝑦 and 𝛾m have
range in [0, 1], i.e. they both assign valid probabilities, unlike in the case
of ϕSM where 𝛾m ranges in [0,∞). One can say that with the application
and the properties of γ−1, we are now directly estimating the necessary
confidences required for the Bayes optimality of the rejector and classifier
for L2D (Definition 3.1.1).

Summary of the Chapter

We derive an alternative loss function for an L2D classification prob-
lem based on the reductions using error-correcting output codes. We
prove that our loss function is a consistent surrogate w.r.t the canonical
0 − 1 loss function for L2D. We further describe how to estimate the
confidence required for the Bayes optimal behavior of an L2D system.
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—I am pretty sure that we are on our adventure, Emmett. — Amor Towles, The Lincoln Highway

In this chapter, we empirically study the properties of the proposed OvA
surrogate loss ψOvA for L2D and compare them with ϕSM along with
the common baselines for L2D in the literature. We perform two types
of experiments. In the first, we verify the confidence calibration property of
the proposed OvA surrogate loss. We also demonstrate the significance
of better confidence calibrated models and the efficacy ofψOvA compared
with ϕSM in a safety-critical application scenario. In the second type
of experiment, we assess the overall system’s performance in terms of
classification accuracy on tasks ranging from hate speech detection to
galaxy classification to skin lesion diagnosis. We compare our OvA-based
method to the softmax surrogate method as well as other state-of-the-art
methods for L2D in the literature. Although ψOvA is amenable to any
strictly proper binary composite loss function, we use the logistic loss
for all our experiments. We report results averaged over re-runs with six
different random seeds.

5.1 Assessing Confidence Calibration

In this section, we assess the confidence calibration property of the
proposed OvA surrogate loss. We are interested in estimating the quality
of the class probability 𝑝𝑦 = ℙ (y = 𝑦 |x = 𝒙) and the expert’s correct-
ness probability 𝑝m = ℙ (m = y|x = 𝒙). We refer the reader to Chapter 3
(Learning to Defer) and Chapter 4 (One-vs-All Surrogate Loss for Learn-
ing to Defer) for how to estimate these probabilities for both ϕSM and
ψOvA. Since 𝑝𝑚 can be a degenerate quantity for ϕSM, we focus special
attention to the calibration property of 𝑝𝑚 , and we call it confidence cal-
ibration w.r.t. expert correctness. We perform experiments on CIFAR-10

(Krizhevsky, 2009) and HAM10000 (Tschandl et al., 2018). We now discuss
our experimental settings and results in the following sections.

5.1.1 Comparison to the Softmax Loss on CIFAR-10

Data, Model, and Training We use the standard train-test splits of
CIFAR-10 (Krizhevsky, 2009). We further partition the training split by
90% − 10% to form training and validation sets, respectively. We simu-
late the expert demonstrations from the training labels, as described in
detail below. We use the same neural network and training settings for
both the OvA and softmax methods. Following Mozannar and Sontag
(2020), we use a wide residual networks (Zagoruyko and Komodakis,
2016) to parameterize the 𝑓 (𝒙) functions. We train a 28-layer network
using stochastic gradient descent (SGD) with momentum and a cosine
annealing schedule for the learning rate. We employ early stopping, and
terminating training if the validation loss does not improve for 20 epochs.
Additional experimental details can be found in Appendix A.3.
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Figure 5.1: Calibration and Accuracy of OvA Parameterization on CIFAR-10. Subfigure (a) reports a reliability diagram and the expected
calibration error (ECE) for 𝑝OvA

m (𝒙) (Eq. 3.7). A darker bin shade means more samples in the bin. Subfigure (b) shows the distribution
of risk estimates.

Table 5.1: Subtable (a) reports ECE (%) w.r.t expert correctness. We compare confidence-calibration across the three parameterizations
considered: OvA, softmax, and proxy (𝑝⊥) for the estimator of 𝑝m. Subtable (b) reports ECE (%). We compare calibration across the two
parameterizations: OvA and softmax for the estimators of ℙ (y = 𝑦 |x = 𝒙).

Setting OvA Softmax Proxy
Both Random 0.53 0.97 0.04
Random Expert 0.68 3.72 2.83
Random Data 2.05 2.07 39.06
Both Useful 1.68 3.32 37.15

(a) ECE (%) w.r.t Expert Correctness on CIFAR-10

’

Setting OvA Softmax
Both Random 0.51 0.34
Random Expert 6.47 7.22
Random Data 1.94 2.36
Both Useful 6.92 7.92

(b) ECE (%) w.r.t Classifier Correctness on CIFAR-10

OvA Method’s Calibration We now test our OvA method’s calibration
in the same experimental setting used to test the softmax method in
Section 3.3.1 Chapter 3 (Learning to Defer). To reiterate, the expert has a
75% chance of being correct in the first five classes and a random chance
in the last five. Figure 5.2a reports a reliability diagram and the ECE.
Compared to the softmax results in Figure 3.2b, our OvA loss produces a
model that has an over fifty percent reduction in ECE: 7.58% for softmax,
3.01% for OvA. Figure 5.2b reports the empirical distribution of error
estimates: 1− 𝑝OvA

m (𝒙). Unlike the corresponding softmax results in Figure
3.2c, the OvA method produces sharper modes nearer to the true error
values. Moreover, OvA does not have a false mode at zero.

Comparing Calibration Across Estimators We next test OvA’s cali-
bration against not only the softmax but also the proxy function 𝑝⊥
defined in Section 3.3 Chapter 3 (Learning to Defer). It is possible that
the deferral function 𝑝⊥(x) is a useful estimator of ℙ(m = y|𝒙), despite
that theory suggests otherwise. Here the range is no longer a problem
because 𝑝⊥(x) ∈ [0, 1]. We consider two types of experts: a useful one
and a random one. The useful one is an oracle (i.e. always correct) for
the first seven classes and predicts randomly for the last three classes.
The random expert predicts uniformly over all classes. Moreover, we
consider when the data is useful, i.e. the original CIFAR-10 training split,
and when it is random, i.e. training labels are uniformly random.

ECE results for the OvA, softmax, and proxy (𝑝m) methods are reported in
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Figure 5.3: Accuracy and Coverage plot for
CIFAR-10. We report the accuracy as a
function of an expert with increasing
expertise (left) and of varying coverage
(right). Coverage means the %ge of sam-
ples where 𝑟(𝒙) = 0.
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Figure 5.4: Effect of post-processing cali-
bration for One-Vs-All rejector. We can see
that post-processing calibration of 𝑝m(𝒙)
further improves the system accuracy.
This shows the effect of calibration on
the overall system’s accuracy for L2D.

Table 5.1a. OvA has the best ECE in all but one case—the one in which both
expert and data are random. Yet the 𝑝⊥ proxy is clearly not a viable estima-
tor since it has an egregious ECE of 37.15% when both data and experts are
useful. Furthermore, its ECE is an even worse 39.06% when the expert is
useful and the data is random. In general, the softmax’s true estimator 𝑝m
is competent but still consistently worse than the OvA estimator. We com-
pare the ECE values for the classifier for OvA and softmax in Table 5.1b.

System Accuracy and Coverage Next, we compare the OvA system’s
accuracy to the softmax’s. The expert in this case has a 70% chance of
being correct if the image belongs to the classes [1, 𝑘] and a random
chance if it belongs to classes [𝑘, 10]. We then vary 𝑘 from 𝑘 = 2 to 𝑘 = 8.
The left plot in Figure 5.3 shows accuracy vs 𝑘. Our OvA model (blue)
has a modest but consistent advantage over the softmax model (red).

The right plot in Figure 5.3 reports the accuracy vs coverage, where
coverage is the proportion of samples that the system has not deferred.
Classifier accuracy is the accuracy on the non-deferred samples. An L2D
system ideally should have high coverage and high accuracy. Again, the
results show the OvA method’s (blue) advantage at most coverage levels.
Note the OvA’s significant superiority at low coverage (0.2 − 0.3). Here
the rejector must carefully choose which instances to pass to the classifier.
We believe that OvA’s success is due to OvA’s superior calibration in
estimating when to defer (as the Bayes rule suggests).

Effect of Calibration on System’s Accuracy Finally, we verify confi-
dence calibration’s role in the overall system’s accuracy. For the trained
one-vs-all model from Figure 5.3, we apply a post-processing calibration
technique called temperature scaling (Guo et al., 2017a) to further calibrate
the rejector. In Figure 5.4, we see that this additional calibration step
marginally improves the system’s accuracy. This result shows that cal-
ibration does positively correlate with accuracy. This result should be
unsurprising given that the correct estimation of confidence is sufficient
to achieve the Bayes rule for L2D.

5.1.2 Risk Assessment on HAM10000

Data, Model, and Expert We again study risk assessment but this
time for a high-stakes medical task. HAM10000 (Tschandl et al., 2018) is
a data set of 10,015 dermatoscopic images containing seven categories
of human skin lesions. We partition the data into 60% training, 20%
validation, and 20% test splits. Each image includes metadata such as
age, gender, and diagnosis type of the lesion. For our simulated expert
model, we train an 8-layer MLPMixer (Tolstikhin et al., 2021). To simulate
the expert having extra information, we input the image metadata into
the final feedforward layer. This model has a classification accuracy of
74% (see Table 5.2 for complete classwise performance). For the classifier,
we fine-tune a 34-layer residual network (ResNet34) (He et al., 2016),
following Tschandl et al. (2020). We use data augmentations such as
random cropping, reflection, and horizontal flipping.
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Figure 5.5: Pointwise risk for Softmax vs OvA models on HAM10000. Subfigure (a) reports the distribution of pointwise risks for the softmax
method: 1− 𝑝m(𝒙). Subfigure (b) reports the distribution of pointwise risks for the OvA method: 1− 𝑝OvA

m (𝒙). We observe markedly more
overlap for the latter. The Wasserstein distance between the empirical and true error distributions is 8.02 ± 1.37 for OvA and 26.72 ± 1.77
for softmax.

Table 5.2: Classwise performance of the simulated MLPMixer expert on HAM10000. We can see that the trained model has non-uniform
performance across different classes. The resulting model is still a valid simulation of a real-world expert who might be an expert for
some classes (class nv for example).

Classes
metric bkl df mel nv vasc akiec bcc weighted avg
precision 0.52 0.33 0.51 0.82 0.27 0.44 0.47 0.71
recall 0.37 0.06 0.21 0.95 0.48 0.39 0.45 0.74
f1-score 0.43 0.10 0.30 0.88 0.34 0.41 0.46 0.71

Results Figure 5.5 visualizes the expert’s predicted error and the
expert’s true error on the HAM10000 test set. Subfigure (a) shows re-
sults for the softmax method and (b) for our OvA method. We restrict
𝑝m(𝒙) ∈ (0, 1] for the softmax surrogate. The gap between the predicted
and true error is substantially reduced for OvA. We confirm this quan-
titatively by computing the Wasserstein distance between the true and
predicted error. The distance is 8.02 ± 1.37 for OvA and 26.72 ± 1.77 for
softmax. OvA provides clearly superior estimates of the expert’s error.
This suggests that the OvA method is more faithful and transparent
about the risk associated with asking an expert to make the prediction.
This is a desirable quality in high-stake applications like healthcare.

5.2 Assessing Overall System’s Accuracy

Data We examine the OvA method’s classification error on three real-
world tasks: HAM10000 (Tschandl et al., 2018) for diagnosing skin le-
sions, Galaxy-Zoo (Bamford et al., 2009) for scientific discovery, and
HateSpeech (Davidson et al., 2017) for detecting offensive language. Fol-
lowing Okati et al. (2021), we use a random sample of 10, 000 images for
Galaxy-Zoo. We use 60% train, 20% validation, and 20% test splits for
HAM10000 and HateSpeech.
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1: Here, 𝑝𝑘 (𝒙) = ℙ (y = 𝑘 |𝒙) , 𝑘 ∈ Y.

Baselines We compare the OvA and softmax-based surrogates to three
baselines. The first is differentiable triage (Okati et al., 2021), a policy-
learning method. The other two baselines are confidence-based methods
that do not enjoy theoretical guarantees. The two are the score baseline
(Raghu et al., 2019) and the confidence baseline (Bansal et al., 2021a). We
note that the differentiable-triage algorithm (Okati et al., 2021) considers
the triage level (or budget) in the training of the algorithm. Since the
expert might be difficult or expensive to access, budget is the upper limit
on the proportion of samples that can be deferred to the expert. None
of the other baselines have this aspect. Thus, to fairly compare all the
other methods with the differentiable triage algorithm, we use the same
methodology employed by Okati et al. (2021) in their paper (We refer the
reader to Appendix C of their paper for more details). For each of the
method, we also provide the details below: 1

1. Softmax Surrogate (Mozannar and Sontag, 2020) : for a budget 𝑏
and the samples size N, it sorts the samples in increasing order of
max𝑘∈[K] 𝑝𝑘(𝒙)− 𝑝⊥(𝒙), and then defers the min (⌊𝑏 |N|⌋ , 𝑛𝑐) where
𝑛𝑐 is the number of samples for which 𝑝⊥(𝒙) ≥ max𝑘∈[K] 𝑝𝑘(𝒙).

2. OvA Surrogate: we use the same procedure as the softmax method.

3. Score Baseline (Raghu et al., 2019): this method first trains a classi-
fier model, and uses the classifier’s predictive uncertainty to defer
to the expert. Note that this classifier is trained in a regular way,
i.e. it doesn’t employ any additional procedure for deferral. During
test time, it first sorts the dataset of size N in the increasing order of
max𝑘∈[K] 𝑝𝑘(𝒙), and defers to the expert first ⌊𝑏 |N|⌋ for the budget 𝑏.
The performance of this method depends on the reliability of the un-
certainty estimates the classifier provides. We, therefore, use a post-
processing calibration technique called temperature scaling (Guo et
al., 2017a) to calibrate the classifier using the validation dataset split.

4. Confidence Baseline (Bansal et al., 2021a): this method first es-
timates ℙ(y = m), the probability of the expert being correct.
However, this estimate is independent of the input sample 𝒙,
i.e. ℙ (y = |x = x) = ℙ (y = m). Having obtained this estimate, it
trains the system sequentially where at each iteration, it uses
only min (⌊𝑏N⌋ , 𝑛𝑐) samples with the lowest value of ℙ(y = m) −
max𝑘∈[K] 𝑝𝑘 (𝒙) in the corresponding mini-batch for training. Here,
𝑛𝑐 is the number of samples where ℙ (y = m) > max𝑘∈[K] 𝑝𝑘 (𝒙).
During test time for the budget 𝑏, it first sorts the dataset of size
N in the increasing order of max𝑘∈[K] 𝑝𝑘 (𝒙), and defers the first
min (⌊𝑏 |N|⌋ , 𝑛𝑐) samples to the expert, where 𝑛𝑐 denotes the same
quantity as before except this time for the test set samples.

5. Differentiable Triage (Okati et al., 2021): this is a sequential learn-
ing algorithm that first estimates the predictive model for a given
budget 𝑏, and then having learned the model, it approximates the
optimal triage policy for the learned model and 𝑏. The optimal
triage policy is to compare the model’s prediction loss and the
expert’s prediction loss and defer to the expert if the latter is smaller
than the former. Therefore, the training algorithm assumes access
to the expert’s predictive loss as opposed to just the expert’s predic-
tions for the surrogate loss methods. Following the original authors,
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Figure 5.6: Accuracy on HateSpeech, Galaxy-Zoo, and HAM10000. The subfigures report the classification error of the OvA method, softmax
method, and baselines for three data sets. OvA (green) is competitive in all cases and is superior for HateSpeech and Galaxy-Zoo.

we use the negative log-likelihood (NLL) loss as the expert’s loss.
At test time, it uses the learned approximation of the optimal triage
policy to defer to the expert.

Models and Experts For these experiments, we closely follow the setup
of Okati et al. (2021). Our base model is a 50-layer residual network
(ResNet50) for Galaxy-Zoo. For HateSpeech, we first embed the tweet’s
text into a 100-dimensional feature vector using fasttext (Joulin et al., 2016).
Our base model for HateSpeech is the text classification convolutional
neural network (CNN) developed by Kim (2014). For the surrogate loss
methods, we sample the expert demonstrations from the expert model’s
predictive distribution. For training the surrogate models, we early stop
if the validation loss does not improve for 20 epochs. We train the models
using Adam (Kingma and Ba, 2015), a cosine-annealed learning rate,
and a warm-up period of 5 epochs. For other baselines, we use the same
experimental setup as Okati et al. (2021).

Results Figure 5.6 reports the classification accuracy for each data set
and each baseline as a function of the budget. The OvA surrogate is
competitive among all baselines for the range of budgets considered. This
shows that the OvA does not sacrifice accuracy for improved confidence
calibration. Rather, our model enjoys the benefits of both predictive
performance and better uncertainty quantification. OvA’s performance
is also quite stable across random seeds.

5.3 Ambiguity rejection and the one-vs-all
surrogate loss

As we saw in the proof of Theorem 4.2.1 in Chapter 4 (One-vs-All
Surrogate Loss for Learning to Defer), the One-vs-All surrogate loss can
also consider the ambiguity rejection rule (where the system is ambiguous
about the actual label for the input). In this section, we consider whether
ambiguity rejection happens in practice or not. Note that ambiguity
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rejection in OvA surrogate loss arises from estimation errors, as ambiguity
rejection means having two output prediction labels with �𝑦 (𝒙) >
1/2. This contradicts the rules of probabilities and must not happen
theoretically. Nevertheless, we study this as a measure of the fitting
property of the OvA surrogate loss. We hypothesize that if ambiguity
rejection is prominent in an L2D system returned by a classification
algorithm minimizing the OvA surrogate loss, it would mean the system
demonstrates poor theoretical properties and may not be consistent in
practice. To study this, we train an L2D system on the DirtyMNIST dataset
(Mukhoti et al., 2021). DirtyMNIST is a concatenation of regular MNIST
images and Ambiguous MNIST images, where the latter are synthetically
generated images with multiple valid output labels. We simulate an
expert with perfect expertise in the image samples with unique output
labels and predict a random label for the images with multiple labels.
We find that only ≈ 1% images were assigned the ambiguity rejection
rule at test time. We further test this L2D system on NotMNIST∗ images
to see the effect of out-of-distribution images. We again observe that the
system assigned only 0.4% of the samples to ambiguity criteria. These
empirical results suggest that the trained L2D system abides by the laws
of probabilities and makes significantly fewer approximation errors.

Summary of the Chapter

In this chapter, we empirically verify that our one-vs-all surrogate
loss for learning to defer provides well-calibrated confidence esti-
mates compared with the softmax surrogate method. Furthermore,
experiments on three real-world tasks (hate speech detection, galaxy
classification, and skin lesion detection) show that our method’s
accuracy is comparable (and often better) than the softmax surrogate
method and other baselines for learning to defer.

∗ http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html


Calibration of Learning to Defer
to Multiple Experts 6

Let the road rise up to meet you, say the Irish, and that’s what was happening to the intrepid travelers on the Lincoln
Highway. It was rising up to meet each and every one of them, whether they were headed east, headed west, or going

around in circles. — Amor Towles, The Lincoln Highway

So far in this thesis, we have studied learning to defer systems with
one expert. Yet in many critical applications, it is common to involve
multiple experts. For example, in healthcare, serious illnesses require the
patient to be treated by multiple specialists. In this chapter, we extend
the framework of single expert learning to defer framework to allow for
multiple experts. We will see that it’s easy to extend single expert learning
to defer to allow for multiple experts, given the theoretical foundations
for learning to defer framework in Chapter 3 (Learning to Defer).

Note on Contributions: This chapter is based on the paper: On the
Calibration of Learning to Defer Multiple Experts, co-authored with Daniel
Barrejón and Eric Nalisnick, and presented at the ICML 2022 Workshop on
Human-Machine Collaboration and Teaming held in Baltimore, USA.

6.1 Learning to Defer to Multiple Experts

Same as before, we have X as the input space, Y = [𝐾] as the output
label space, and distribution D over X× Y. x and y denote the random
variables over X, with 𝒙 and 𝑦 as their realizations respectively. Let
there be 𝐽 experts, and denote each expert’s prediction space as M𝑗 ,
and we continue with the assumption that M𝑗 = Y. We again have
m𝑗 as the random variable associated with the 𝑗th expert, 𝑚 𝑗 as its
realization. We have 𝑚 𝑗 ∼ ℙ𝑗

(
m𝑗 |x, y

)
. We assume access to the finite

sample 𝑆 = {𝒙𝑖 , 𝑦𝑖 , 𝑚𝑖 ,1 , . . . , 𝑚𝑖 ,𝐽}N
𝑖=1. Again, the goal is to learn two

functions: the classifier and the rejector. In L2D with one expert, the
rejector makes a binary decision—to defer or not—but in multi-expert
L2D, the rejector also must choose to which expert to assign the instance.
Thus, while the classifier takes the same form as the single expert L2D, the
rejector is now 𝑟 : X→ {0, 1, . . . , 𝐽}. When 𝑟(x) = 0, the classifier makes
the decision in a typical way. When 𝑟(x) = 𝑗, the classifier abstains and
defers the decision to the 𝑗th expert. Our focus is again on the 0 − 1 loss
for L2D. Now based on Definition 3.1.1 for the Bayes optimal rejector and
classifier for single expert L2D, it’s easy to argue for the Bayes optimal
rejector and classifier for the multi-experts L2D.

According to Definition 3.1.1, we should defer to the expert only if the
probability of the expert making the correct prediction is greater than
that of the classifier. This argument can be extended to a multi-expert
setting that, among all the 𝐽 experts, the system should compare the
confidence of each of the experts and the classifier, and defer to 𝑗th
expert if the probability of 𝑗the expert making the correct prediction
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is greater than that of the classifier. Thus, we get the following Bayes
optimal classifier ℎ∗(𝒙) and rejector 𝑟∗(𝒙):

ℎ∗(𝒙) = arg max
𝑦∈Y

ℙ(y = 𝑦 |x = 𝒙),

𝑟∗(𝒙) =
{

0 if ℙ(y = ℎ∗(𝒙)|x = 𝒙) > ℙ(m𝑗′ = y|x = 𝒙) ∀𝑗′

arg max𝑗∈[1,𝐽] ℙ(m𝑗 = y|x = 𝒙 , y = 𝑦) otherwise,

(6.1)

where ℙ(y|x = 𝒙) is the probability of the label under the data generating
process, and ℙ(m𝑗 = y|x = 𝒙 , y = 𝑦) is the probability that the 𝑗th expert
is correct.

We next see how to extend the softmax surrogate loss and the OvA
surrogate loss for this multi-experts L2D setting. For both the cases, we
have the prediction space Y⊥ := Y∪ {⊥1 , . . . ,⊥𝐽} where ⊥𝑗 denotes
the decision to defer to the 𝑗th expert. Similar as before, we use the
surrogate prediction space V= ℝK+J, and learn a surrogate prediction
function 𝑓 : X→ ℝK+J, which can be considered pointwise to give K + J
𝑓 functions: 𝑓1 , . . . , 𝑓𝐾 , 𝑓⊥,1 , . . . 𝑓⊥,𝐽 .

Softmax Surrogate Loss The softmax surrogate loss function extended
to the multi-expert setting is then given as:

ϕSM
(
𝑓1 , . . . , 𝑓𝐾 , 𝑓⊥,1 , . . . , 𝑓⊥,𝐽 ; 𝑦, 𝑚1 , . . . , 𝑚𝐽

)
=

− log
( exp{ 𝑓𝑦(𝒙)}∑

𝑦′∈Y⊥ exp{ 𝑓𝑦′(𝒙)}

)
−

𝐽∑
𝑗=1

𝕀[𝑚 𝑗 = 𝑦] log
( exp{ 𝑓⊥, 𝑗(𝒙)}∑

𝑦′∈Y⊥ exp{ 𝑓𝑦′(𝒙)}

)
.

As for the decoding function 𝑔, we use the same arg max function. The
classifier is obtained by taking the maximum over 𝑘 ∈ [1, 𝐾]: �̂� = ℎ(𝒙) =
arg max𝑘∈[1,𝐾] 𝑓𝑘(𝒙). The rejection function is similarly formulated as

𝑟(𝒙) =
{

0 if 𝑓ℎ(𝒙) > 𝑓⊥, 𝑗′ ∀𝑗′ ∈ [1, 𝐽]
arg max𝑗∈[1,𝐽] 𝑓⊥, 𝑗(𝒙) otherwise.

One-vs-All Surrogate Loss OvA surrogate loss too can be straightfor-
wardly extended to the multi-expert setting:

ψOvA( 𝑓1 , . . . , 𝑓𝐾 , 𝑓⊥,1 , . . . , 𝑓⊥,𝐽 ; 𝑦, 𝑚1 , . . . , 𝑚𝐽) =

ϕ[ 𝑓𝑦(𝒙)] +
∑

𝑦′∈Y,𝑦′≠𝑦
ϕ[− 𝑓𝑦′(𝒙)] +

𝐽∑
𝑗=1
ϕ[− 𝑓⊥, 𝑗(𝒙)]

+
𝐽∑
𝑗=1

𝕀[𝑚 𝑗 = 𝑦]
(
ϕ[ 𝑓⊥, 𝑗(𝒙)] − ϕ[− 𝑓⊥, 𝑗(𝒙)]

)
where ϕ : {−1, 1} × ℝ ↦→ ℝ+ is a binary surrogate loss. We define the
classifier and rejector exactly as in the softmax case.

It’s now a straightforward exercise to see that both the softmax surrogate
and OvA surrogate are consistent surrogates for learning to defer w.r.t
the canonical 0 − 1 loss function.
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6.2 Confidence calibration of Expert Confidence

For both types of L2D parameterizations, we are again interested in
studying the confidence calibration of the system (Dawid, 1982). Specifically,
we are interested in the model’s ability to estimate ℙ(m𝑗 = y|𝒙). This
quantity is crucial not only for the system’s ability to correctly defer but
is also useful for interpretability and safety—to quantify what the model
thinks the human knows. We saw in earlier chapters that the softmax
surrogate loss can result in poor estimators of this quantity in practice,
despite having valid Bayes optimal solutions. In this chapter, we examine
each parameterization’s behavior in the multi-expert formulation. For
the prediction function 𝑓 ∗ returned by the L2D classification algorithm
working with each of these surrogates, we next describe how to get the
estimator of ℙ

(
m𝑗 = y|x = 𝒙

)
for each of the surrogates.

6.2.1 Softmax Parameterization

We define 𝑝⊥, 𝑗 ( 𝑓 ∗ (𝒙)) as

𝑝⊥, 𝑗 ( 𝑓 ∗ (𝒙)) =
exp{ 𝑓 ∗⊥, 𝑗 (𝒙)}∑

𝑦′∈Y⊥ exp{ 𝑓 ∗𝑦′ (𝒙)}
.

Then, the suitable inverse link function 𝛾m𝑗
function 𝛾𝑗 : ℝK+J → [0, 1]

to estimate ℙ
(
m𝑗 = y|x = 𝒙

)
is given as

𝛾m𝑗 ( 𝑓 ∗ (𝒙)) =
𝑝⊥, 𝑗 ( 𝑓 ∗ (𝒙))

1 −∑𝐽

𝑗′=1 𝑝⊥, 𝑗′ ( 𝑓 ∗((𝒙))
. (6.2)

We derive this in Appendix A.2.3. One can see that due to the denomina-
tor involving the quantity 𝑝⊥, 𝑗 ( 𝑓 ∗ (𝒙)) for all experts, there is dependence
across the estimators. Same as 𝛾m for the single expert setting, we can
clearly see that 𝛾m𝑗

is a ‘fragile’ estimator, as it is not guaranteed to
range in the required [0, 1] range. For instance, for 𝑝⊥, 𝑗 ( 𝑓 ∗ (𝒙)) > 0, as∑𝐽

𝑗′=1 𝑝⊥, 𝑗′ ( 𝑓 ∗ (𝒙)) approaches one, the estimate of ℙ
(
m𝑗 = y|x = 𝒙

)
will

go to infinity.

6.2.2 One-vs-All Parameterization

For the OvA formulation, the inverse link function γ−1 associated with
the strictly proper composite loss ϕ directly gives us the estimate for
ℙ
(
m𝑗 = y|x = 𝒙

)
, i.e.

𝛾m𝑗 ( 𝑓 ∗ (𝒙)) = γ−1 ( 𝑓 ∗ (𝒙)) .

Here, we define,

𝛾m𝑗 ( 𝑓 ∗ (𝒙)) = γ−1 :
(
𝑓 ∗1 (𝒙) , . . . , 𝑓 ∗⊥,𝐽 (𝒙)

)
↦→ γ−1

(
𝑓 ∗⊥, 𝑗 (𝒙)

)
.
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Figure 6.1: Generated Mixture of Gaussian
(MoG) dataset. The dataset represents the
varying level of complexity for the sim-
ple classifier with cluster 2 and cluster 3
demonstrating severe overlap conducive
to querying the expert for correct predic-
tion. The other two clusters are easy to
be learned by the classifier.

6.3 Experiments

We perform experiments on synthetic data and on the CIFAR-10 (Krizhevsky,
2009) dataset. We use ECE as the measure of confidence calibration. Since
the softmax parameterization can result is probability estimates greater
than one, we cap confidences at 1.0 to calculate ECE in all experiments.
First, we study the effect of gradually increasing the number of experts on
the overall calibration of the system. Second, we examine how different
experts’ behavior affects other expert estimates. Our results suggest that
systems trained with the softmax surrogate exhibit degradation in cali-
bration as the number of experts increases. Furthermore, other experts
in the committee significantly affect the calibration of other experts.

6.3.1 Datasets and Models

Mixture of Gaussians For the synthetic dataset, we generate a mixture
of Gaussians (MoG) with 4 clusters. The data is plotted in Figure 6.1. It
shows the severe overlap between cluster 2 and cluster 3, and thus these
clusters represent where the expert’s advice might be required. The other
two clusters have a small overlap and can be discriminated by a simple
classifier. For the classifier, we use a small feedforward neural network
with four layers. We train it using stochastic gradient descent (SGD) with
early stopping (look-ahead of 20 epochs).

CIFAR-10 For the experiments using CIFAR-10, we use the canonical
train-test split (Krizhevsky, 2009). We partition the training split 90% −
10% to form training and validation sets, respectively. We use a wide
residual network (Zagoruyko and Komodakis, 2016) to parameterize the
𝑓 (𝒙) functions. We train a 28-layer network using SGD with momentum
and a cosine annealing schedule for the learning rate. We again employ
early stopping with 20 look-ahead epochs.

We first examine calibration under an increasing number of experts—
from 1 to 8. For the MoG dataset, the experts are oracles if an instance
belongs to either cluster #3 or #4 and predict randomly over all classes
otherwise. For the CIFAR-10 dataset, the experts are an oracle for the first
5 classes and predict randomly over all 10 classes otherwise.

The results are reported in Figure 6.2 (a, b, d, e). Firstly, examine sub-
figures (b) and (e), which report the system accuracy to ensure both
parameterizations are well-performing. We see that the OvA parame-
terization is slight to moderately superior in all cases. Moving on to
the calibration results, the average ECE (across the 𝐽 deferral functions)
is reported in subfigures (a) and (d). We see that the OvA parameter-
ization (orange) is roughly stable w.r.t. expert size, but the softmax’s
(blue) average ECE tends to increase. This behavior is expected for the
softmax according to Equation 6.2. With the addition of more experts, the
denominator becomes smaller, leading to overconfident (and degenerate)
estimates for ℙ(m𝑗 = y|𝒙). However, we do see some cancellation effects
with the addition of the second expert in Figure 6.2 (d). This can be
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Figure 6.2: Calibration and System Accuracy on Simulated Data and CIFAR-10. The first column reports ECE under an increasing number of
experts, the second column the system accuracy, and the third column the ECE to show the dependence across experts. The top row
shows results for the mixture of Gaussians simulation, and the bottom row shows results for CIFAR-10.

explained by the fact that adding more experts constrains the confidence
allocation to multiple experts (due to the tied nature of the softmax
parameterization). But the effect dissipates for 4 or more experts, with
the average ECEs continuing to increase.

6.3.2 Expert Dependence

We further aim to assess confidence calibration when there is a gap in
expert quality. We simulate four experts with one always being random
and the other three have an increased probability of correctness (20% -
95%). For the MoG dataset, three experts will increase their probability
of being correct on two of the clusters and predict randomly for the
other two. For CIFAR-10, three experts increase their probability of being
correct in the first five classes and predict randomly for the other ten
classes. We hypothesize that for the softmax, the calibration of the random
expert will increase when the probability of correctness for the other
three experts increases due to the tied parameterization. We conjecture
that no such dependence will be present in the OvA results.

The results are reported in the third column of Figure 6.2. We see that the
ECE for the random expert dramatically increases for both datasets for
the softmax parameterization (blue), reaching values above 40%. Yet for
OvA (orange), the ECE is nearly flat for both datasets due to its explicit
independence across experts. This supports our hypothesis from above
that the softmax parameterization will skew per-expert estimation due
to its dependencies across experts.
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Figure 6.3: Calibration and System Accu-
racy on CIFAR-10 for expert dependence.
Subfigure (a) reports the ECE when
an increasing number of specialized
experts are incorporated. Subfigure (b)
reports the system accuracy under the
same conditions.

6.3.3 Specialized Experts

For our final experiment, we examine calibration when the experts have
non-overlapping expertise.

For CIFAR-10, each expert is simulated to be an oracle in two of the ten
classes. Figure 6.3 reports the average ECE across experts (a) and the
system accuracy (b) as the number of specialized experts increases. For
system accuracy, both methods are competitive, with OvA (orange) hav-
ing a slight edge. For ECE, OvA is again clearly superior by being stable
across the number of experts. Thus we see that despite the experts having
independent expertise, the softmax parameterization still accumulates
calibration errors.

Summary of the Chapter

We extend the single expert learning to defer framework in the case
of multiple experts. We show that the softmax surrogate and the OvA
surrogate loss functions can be easily extended to give consistent
surrogates w.r.t. 0 − 1 loss function for multi-expert learning to
defer. We then examine the confidence calibration w.r.t the expert
correctness for these methods. Our experiments on simulated and
real data suggest that the softmax parameterization of multi-expert
L2D exhibits calibration error, especially for an increasing number of
experts. The OvA parameterization, on the other hand, is much more
stable for multiple experts. We further find that the softmax method
causes mis-calibration to propagate between the estimates of expert
correctness while the latter’s parameterization does not.
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—Welcome, weary travelers, he called across the fire. From where do you hail? — Amor Towles, The Lincoln Highway

This thesis studies learning to defer (L2D) and its confidence calibration
properties both in single expert and multi-expert settings. Learning to
defer is a promising learning paradigm to foster trust and reliability
in artificial intelligence (AI) systems, especially in critical application
scenarios. Moreover, it also enables division of labor and human-AI comple-
mentarity. In this chapter, we survey works in the same vein starting with
rejection learning, general human-AI collaboration, complementarity,
calibration of confidence estimates, and its role in the trustworthiness
and reliability of an AI system.

7.1 Learning to Reject and Learning to Defer

Learning to defer framework can be seen as a generalized version of
the learning to reject (a.k.a. rejection learning) problem in machine
learning. Rejection learning is a framework in which a classifier can
abstain from making a prediction and incurs a fixed cost 𝑐, instead of
a sample dependent loss ℓexp for abstaining and querying the expert in
L2D. The problem dates back to (at least) Chow (1957)’s work on studying
the optimal rejection rule for a fixed 𝑐, famously referred to as the Chow
rule,

ℎ∗ (𝒙) =
{

reject if max𝑦∈Yℙ (y = 𝑦 |x = 𝒙) ≤ 1−c
arg max𝑦∈Yℙ (y = 𝑦 |x = 𝒙) otherwise .

Chow (1970) further analyzed the trade-off between this rejection rate 𝑐
and the overall accuracy. Due to its potential in addressing misclassifica-
tion costs in consequential decision-making applications (where the cost
of a classifier making a wrong decision is very high), these initial works
have simulated a range of follow-up approaches. Obviously, now, these
works’ major focus is to design consistent algorithms for rejection learning.
These works can be broadly categorized into two types: confidence-based
(Bartlett and Wegkamp, 2008; Yuan and Wegkamp, 2010; Jiang et al.,
2018; Grandvalet et al., 2009; Ramaswamy et al., 2018; Ni et al., 2019) and
the classifier-rejector (Cortes et al., 2016a; Cortes et al., 2016b) approaches.
Given the estimates of ℙ (y = 𝑦 |x = 𝒙), we trivially have the optimal re-
jection learning classifier. So the confidence-based methods aim to design
consistent algorithms by trying to estimate the class probabilities. Building
upon the theoretical background we provide in Chapter 2 (Preliminaries),
Yuan and Wegkamp (2010) showed that standard binary classification
algorithms based on strictly proper composite losses like logistic loss,
exponential loss, and least squares loss give the consistent algorithms
for rejection learning. However, it’s not directly trivial to design such
algorithms for general multiclass classification problems. Ramaswamy
et al. (2018) extend these results for a general classification case and
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provide consistent algorithms for 𝑐 ∈ [0, 1/2]. In practice, confidence
methods consider the prediction uncertainty (Hendrycks and Gimpel,
2017; Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017) and
abstain from making a prediction if the classifier’s confidence is less
than some threshold. Thus, these methods have a simple rejector — a
fixed threshold. Classifier-rejector methods, on the other hand, jointly
learn two functions, a classifier, and a rejector, usually from two different
hypothesis sets. Cortes et al. (2016a) and Cortes et al. (2016b) argue that
classifier-rejector methods generalize confidence-based methods and re-
sult in more powerful algorithms in practice when working with limited
hypothesis class H. First and foremost, they circumvent directly estimat-
ing class probabilities which are difficult to computationally estimate
(Guo et al., 2017b). The classifier-rejector approach has been well-studied
for binary classification and resulted in theoretical guarantees (Cortes
et al., 2016a; Cortes et al., 2016b). Ni et al. (2019) was the first to seriously
study the multi-class formulation and found that the existing theory
was hard to extend to this more general case. Recently, Charoenphakdee
et al. (2021) proposed a surrogate loss for rejection learning for general
classification, taking inspiration from cost-sensitive learning.

=-1For safety-critical applications, rejection learning is a promising
paradigm. However, its learning procedure completely ignores the down-
stream experts who will eventually make decisions for the rejected
samples. For instance, the downstream decision-maker could be just as
inaccurate as the classifier. To this end, Madras et al. (2018) introduced
an adaptive rejection learning framework termed learning to defer. L2D
aims to directly model the interaction between the (usually human)
decision-makers and the autonomous system. More formally, they build
upon the work of Cortes et al. (2016a) to introduce a rejector function
𝑟(𝒙) to model whether to defer to the expert (𝑟 (𝒙) = 1) or not (𝑟 (𝒙) = 0).
This results in a mixture-of-experts type loss (as we saw in Equation 3.1
in Chapter 3 (Learning to Defer)). Raghu et al. (2019) approaches the
same problem by confidence-based methods by learning a classifier and
comparing the expert’s certainty and the classifier’s certainty, deferring
if the latter is lower. Wilder et al. (2020) use the same mixture of experts
framework as Madras et al. (2018) and apply the same confidence-based
deferral policy as Raghu et al. (2019).

Mozannar and Sontag (2020) study the L2D multi-class classification
problem in generality, finding the algorithms proposed by Madras et al.
(2018) as inconsistent. They also study the limitation of confidence-based
approaches (Raghu et al., 2019). Moreover, they propose the first con-
sistent loss for multiclass L2D, asserting the importance of consistent
algorithms for learning to defer. Okati et al. (2021) studied the problem
of L2D in more general settings than classification and derived results on
the optimal deferral policy. Their result is the same as the result we state
in Corollary 3.1.2, except their results are derived from the constrained
optimization point of view while we look at the problem from the lens of
decision theory. They also propose a gradient-based algorithm that learns
an approximation of this optimal deferral policy for any predictive model.
Keswani et al. (2021) consider learning to defer setting where a system
could defer to multiple experts and propose a surrogate loss for this. How-
ever, their surrogate loss function is not consistent. Liu et al. (2022) build
upon the work of Mozannar and Sontag (2020) to consider uncertainty in
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classifier’s predictions to decide the decision of deferral. They propose a
two-stage algorithm, where first, an ensemble of classifiers is trained, and
in the second stage, an L2D system takes as input the predictions from
the classifiers as well as their uncertainties to decide whether to let the
classifier make the prediction or defer to the expert. In this way, their work
bridges the confidence-based and classifier-rejector approaches to learn-
ing to defer. Parbhoo et al. (2021) also consider uncertainty in predictions
to decide when to defer in sequential decision-making applications.

7.2 Human-AI Complementarity and Learning
to Defer

In a first of its kind of work in human-AI complementarity, Raghu et al.
(2019) consider the problem of algorithmic triage and argue that machine
learning systems can achieve significantly higher performance by design-
ing them for both — prediction and triage. They show that such a system
can achieve significantly higher performance than just the classifier or
the (human) decision-maker making the prediction, even when each one
is substantially better on average. Considering the promise of algorithmic
triage to achieve better systems and enable human-AI complementarity,
several works have explored machine learning systems with decision
makers in mind (De et al., 2021; De et al., 2020; Bansal et al., 2021a;
Kerrigan et al., 2021; Pandya et al., 2019; Donahue et al., 2022; Vodrahalli
et al., 2021). Bansal et al. (2021b) defines complementarity as a scenario
whenever the combined human-AI system has a strictly lower loss (or
higher performance) than either of those alone. In this direction, contem-
porary works have used complementarity and collaboration as explicit
objectives of the system. For example, Bansal et al. (2021a) optimizes the
expected utility of the machine and the expert working together as a
team and presents a confidence-based learning algorithm for this. Most
recently, Donahue et al. (2022) formally studied the theoretical conditions
when human-AI systems can achieve complementarity. They also give
impossibility results when a human-AI system can never achieve comple-
mentarity. Their theoretical result shows that complementarity is easier
to achieve when human and algorithm errors are highly variable across
samples. A similar result was also proved in an algorithmic triage setup in
Okati et al. (2021). These results explain how a framework like learning to
defer naturally enables complementarity and division of labor. By knowing
what the human knows, the model is free to adapt itself to complement
the humans. The model can concentrate on providing the predictions
for samples with a lower error rate than the humans, thus enabling
complementarity. While these works define complementarity in terms of
average error of the whole system, Charusaie et al. (2022) recently defined
complementarity in terms of learning predictors that improve on human
weaknesses explicitly and design deferral algorithms to this end.
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7.3 Confidence calibration and Learning to
Defer

Learning to defer is a framework suitable for critical applications, like the
medical domain, autonomous driving, etc. Critical applications require
not just point predictions but also accurate quantification of their predic-
tive uncertainty. To enable successful human-AI collaboration, factors like
transparency, trust, and fairness are crucial as well (Cramer et al., 2008;
Kizilcec, 2016; Madras et al., 2018). While well-calibrated uncertainty esti-
mates have a long history to reason about the reliability of a machine learn-
ing system (Gal et al., 2016; Bröcker and Smith, 2007; Zadrozny and Elkan,
2002; Zhang et al., 2020), Bhatt et al. (2021), most recently, argue the impor-
tance of uncertainty for fairness, transparency, decision-making, and trust
in automated AI systems. Most contemporary works in learning to defer
have focused on the overall performance of a system. In this thesis, we are
the first to investigate the quality of uncertainty estimates provided by
the learning to defer system. Our investigation is crucial from two points:
1. Having well-calibrated confidence estimates fosters trust, transparency,
and reliability in the learning to defer system. 2. Getting well-calibrated
confidence estimates is vital for well-behaved learning to defer system
as the Bayes optimal rule for learning to defer relies on these estimates.
For our investigation, we build upon the notion of confidence calibration
(Guo et al., 2017a) — a well-studied measure of the quality of confidence
estimates in machine learning literature. We are unaware of other works
investigating the quality of the confidence estimates in learning to defer.

Summary of the Chapter

In this chapter, we discuss related works in learning to defer in
the context of human-AI complementarity, rejection learning, and
confidence calibration.
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Many years before, Abacus had come to the conclusion that the greatest of heroic stories have the shape of a diamond on

its side. Beginning at a fine point, the life of the hero expands outward through youth as he begins to establish his
strengths and fallibilities, his friendships and enmities. Proceeding into the world, he pursues exploits in grand company,

accumulating honors and accolades. But at some untold moment, the two rays that define the outer limits of this
widening world of hale companions and worthy adventures simultaneously turn a corner and begin to converge. The

terrain our hero travels, the cast of characters he meets, the sense of purpose that has long propelled him forward all begin
to narrow—to narrow toward that fixed and inexorable point that defines his fate.

— Amor Towles, The Lincoln Highway

In consequential human-AI applications, it is vital that the system be
reliable and trusted by the human. A well-calibrated system—a good
forecaster—can help engender this trust. The focus of this thesis was
to study the confidence calibration properties of the learning to defer
systems. We studied the surrogate loss methods that result in consistent
algorithms for learning to defer. We find that the previously (and the
only) consistent surrogate loss method results in degenerate confidence es-
timates for the expert correctness. We remedy this problem by proposing
an alternative surrogate loss for learning to defer that is also consistent.
We also extend the surrogate loss methods to provide consistent algo-
rithms for learning to defer in the case of multiple experts. We conclude
this thesis by discussing crucial points related to the contributions of this
thesis and highlighting possible future directions moving forward.

8.1 Discussion

Applicability of Post-hoc confidence calibration techniques Mis-
calibration (in particular, overconfidence) is common in modern-day
machine learning systems (Guo et al., 2017a; Ovadia et al., 2019). There
are a range of post-hoc techniques designed to fix mis-calibration in
classifiers, e.g. temperature scaling (Guo et al., 2017a), Dirichlet calibration
(Kull et al., 2019), top-label calibration (Gupta and Ramdas, 2022). These
techniques employ a calibration map (Vaicenavicius et al., 2019): a simple
transformation that is applied to the confidence estimates to re-calibrate
them. Such a map is fitted on a held-out validation set using some
goodness-of-fit measure, e.g. log-likelihood. Our experiments suggest
that both the softmax surrogate and one-vs-all surrogate method have
comparable ECEs (one-vs-all is slightly better; refer Table 5.1b). One can
also apply these post-hoc calibration techniques to further confidence
calibrate them for both methods. However, due to the range problem
in expert’s correctness confidence estimates provided by the softmax
surrogate method and interdependence of its 𝒇 functions, we do not know
of a general procedure for defining and fitting a calibration map for the
L2D setting. One can fit such a calibration map to the one-vs-all method
though (and we did that in Section 5.1.1 in Chapter 5 (Experiments)).
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Distribution calibration and the one-vs-all surrogate This thesis pro-
poses a one-vs-all surrogate loss function for learning to defer. We
show that the learning to defer algorithm minimizing the proposed loss
function results in well-calibrated confidence estimates. Yet, one major
downside of the proposed one-vs-all formulation is that we can no longer
compute normalized probabilities for all classes. Rather, we only estimate
the probability of each output label independently. Hence, we can evalu-
ate the confidence calibration of the OvA classifier but not its distribution
calibration. Distribution calibration aims to calibrate the whole predic-
tion distribution — all the samples that have the predictive distribution
𝑝 ∈ ΔK−1 (ΔK−1 is a K-dimensional probability simplex), the true distribu-
tion over output labels should be 𝑝. However, distribution calibration is
nearly impossible to achieve in practice (Zhao et al., 2021a). Thus, we argue
that the OvA formulation is a worthwhile trade-off for having an appro-
priate estimator for ℙ(m = y|𝒙) and to achieve confidence calibration.

Theory vs Practice w.r.t Consistency Consistency of a learning algo-
rithm means that the solution returned by the algorithm agrees with the
Bayes optimal solution. In this thesis, we study the consistent surrogate
loss for learning to defer and propose another surrogate loss that is also
provably consistent. Both surrogate losses have theoretical guarantees
that their minimizer over all measurable functions agrees with the Bayes
solution. However, in practice, we work with a fixed hypothesis class. So,
there is a gap in theory and practice.

Nevertheless, we empirically verify the property of the proposed one-
vs-all surrogate loss to see that it results in fewer estimation errors
and abiding by the laws of probability (refer to Section in Chapter 5
(Experiments)). However, it’s an empirical observation. In the future,
it would be interesting to establish theoretical results to compare the
consistency property of both the surrogates in a limited hypothesis size
and limited sample size setting. Unfortunately, we didn’t find time while
writing this thesis to work on this.

Confidence calibration in practice The major focus of this thesis is to
study the calibration of the confidence estimates provided by the consis-
tent surrogate methods for learning to defer. One quantity of particular
interest in this thesis is the probability of an expert’s correctness. It is cru-
cial for two reasons: 1) The Bayes optimal decision depends on it, and 2)
it fosters faithfulness and transparency in safety-critical applications. By
correctly estimating the expert’s confidence in making the right decision,
one can enable trust and reliability in the system. This thesis and the
prior works make a simplifying assumption that the expert’s predictions
are coming from 𝑚 ∼ ℙ (m|x, y) (where our usual notation holds). Yet
in practical situations, expert(s) might have access to extra information
𝑧 ∼ z that is difficult to computationally model or acquire, and expert
predictions are obtained as 𝑚 ∼ ℙ (m|x, y, z). One can argue that this
would make estimating an expert’s true uncertainties difficult. Thus, it is
an infeasible problem where we want to estimate the true (or calibrated)
uncertainties for Bayes optimality and transparency. But, one can’t com-
putationally estimate them due to this extra information assumption.
Fortunately, estimating true uncertainties in learning to defer is not
necessary to achieve consistent algorithms. Thus, in the future, it would
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be interesting to define other notions of calibration of the confidence
estimates that do not aim to estimate the true uncertainties but still enable
faithfulness, transparency, and trust in general decision-making. One
such notion is that of decision calibration proposed by Zhao et al. (2021b).

Learning to defer with multiple experts In this thesis, we, for the first
time, provide consistent algorithms for learning to defer in the case of
multiple experts by straightforwardly extending the consistent surrogate
methods for learning to defer to a single expert. The resulting algorithms
can choose from a set of multiple experts whom to defer. However, in
many practical scenarios, it is common for many experts together to decide
the outcome. Our framework is restricted because it does not allow syn-
thesizing decisions from multiple experts and just defers to one expert
who has more chance of providing the correct predictions. Many practical
applications benefit from asking multiple experts, mainly due to the differ-
ent expertise of each expert. In the future, it would be helpful to provide
consistent algorithms that allow synthesizing predictions from multiple
experts and establish synergies among experts who might be operating
under different assumptions and have access to different information or
expertise. We are not aware of any works in this direction.



A Appendix

A.1 Proofs

A.1.1 Proof of Lemma 2.2.1

Proof Credits: Worked out together with Tigernach Feehilly (Utrecht University) and Simone Astarita
(University of Amsterdam) in the Mastermath Machine Learning Theory class.

Given the function ℎ∗
D

as defined in the statement of the lemma, and any other function ℎ, we aim to show
that Rℓ0−1

D
[ℎ∗

D
] ≤ R

ℓ0−1
D

[ℎ]. We have

R
ℓ0−1
D

[ℎ] = 𝔼(𝒙 ,𝑦)∼(x,y) [𝕀 [𝑦 ≠ ℎ (𝒙)]] = 𝔼𝒙∼x
[
𝔼𝑦∼y|x=𝒙 [𝕀 [𝑦 ≠ ℎ(𝑥)]]

]
= 𝔼𝒙∼x [ℙ (𝑦 ≠ ℎ (𝒙) |x = 𝒙)] . (A.1)

We now compare ℙ (𝑦 ≠ ℎ (𝒙) |x = 𝒙) and ℙ
(
𝑦 ≠ ℎ∗

D
(𝒙) |x = 𝒙

)
. Denoting � (𝒙) = ℙ (y = 1|x = 𝒙), we have

ℙ
(
𝑦 ≠ ℎ∗D (𝒙) |x = 𝒙

)
= 𝕀[�(𝒙) ≥ 1/2] · ℙ(y = −1|x = 𝒙) + 𝕀[�(𝒙) < 1/2] · ℙ(y = 1|x = 𝒙)
= 𝕀[�(𝒙) ≥ 1/2] · (1 − � (𝒙)) + 𝕀[�(𝒙) < 1/2] · � (𝒙)
= min{� (𝒙) , 1 − � (𝒙)}.

And

ℙ (𝑦 ≠ ℎ (𝒙) |x = 𝒙) = ℙ(ℎ(𝒙) = 1|x = 𝒙) · ℙ(y = −1|x = 𝒙) + ℙ(ℎ(𝒙) = −1|x = 𝒙) · ℙ(y = 1|x = 𝒙)
= ℙ(ℎ(𝒙) = 1|x = 𝒙) · (1 − �(𝒙)) + ℙ(ℎ(𝒙) = −1|x = 𝒙) · �(𝒙)
≥ ℙ (ℎ (𝒙) = 1|x = 𝒙) · min{� (𝒙) , 1 − � (𝒙)} + ℙ (ℎ (𝒙) = −1|x = 𝒙) · min{� (𝒙) , 1 − � (𝒙)}
= min{� (𝒙) , 1 − � (𝒙)}.

Thus, we have ℙ (𝑦 ≠ ℎ (𝒙) |x = 𝒙) ≥ ℙ
(
𝑦 ≠ ℎ∗

D
(𝒙) |x = 𝒙

)
∀𝒙 ∈ x. Combined with Equation A.1 and

considering that expectation is a linear operator, we now conclude that

R
ℓ0−1
D

[ℎ∗D] ≤ R
ℓ0−1
D

[ℎ].
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A.1.2 Proof of Theorem 3.1.1

The loss 𝐿 (𝑦, �̂�, 𝑟 , 𝑚) in Equation 3.1 is

𝐿(𝑦, �̂�, 𝑟 , 𝑚) =
{
ℓexp (𝑦, 𝑚) , if 𝑟 = 1
ℓclf (𝑦, �̂�) , if 𝑟 = 0.

The goal in the general classification problem is to learn a function ℎ : X → Y⊥, where �̂� = ℎ (𝒙).
In what follows, we consider ℎ as first modeling a probabilistic decision rule, i.e. ℎ(𝒙) = 𝑔 (𝜹 (�̂� |𝒙))
where 𝑔 is some simple mapping rule from the probability simplex 𝜹 (�̂� |𝒙) ∈ ΔK to Ŷ. Here, 𝜹 (�̂� |𝒙) =
[𝛿 (�̂� = 1|𝒙) , 𝛿 (�̂� = 2|𝒙) , . . . , 𝛿 (�̂� = K|𝒙) , 𝛿 (�̂� = K + 1|𝒙)], where 𝛿(�̂� = 𝑖 |𝒙) is the probability of making
the prediction �̂� = 𝑖 for 𝒙 ∼ x. Note that we are using K + 1 and ⊥ interchangeably for the deferral decision.
Thus, our goal is now to learn the optimal 𝜹 (�̂� |𝒙). To assess the quality of 𝜹 (�̂� |𝒙), we use the standard
expected-risk (𝐿-risk), as written below:

R𝐿
D[𝜹 (�̂� |𝒙)] =

K∑
𝑖=1

K+1∑
𝑗=1

∫
𝒙

𝛿 (�̂� = 𝑗 |𝒙)ℙ (y = 𝑖) ℓ (y = 𝑖 , �̂� = 𝑗)ℙ (𝒙 |y = 𝑖) 𝑑𝒙 ,

where ℓ : (𝑦, �̂�) ↦→ ℝ+ is a general loss function, 𝑖 runs over the output label space, 𝑗 runs over the output
prediction label space. We can further expand it based on the definition of the loss function 𝐿 above as
follows:

R𝐿
D[𝜹 (�̂� |𝒙)] =

K∑
𝑖=1

∫
𝒙

©«
K∑
𝑗=1

𝛿
(
�̂� 𝑗 |𝒙

)
ℓclf (𝑖 , 𝑗) +

K∑
𝑚=1

𝛿 (�̂�K+1 |𝒙) ℓexp (𝑖 , 𝑚)ℙ (𝑚 |𝒙 , y = 𝑖)
ª®®¬ℙ (y = 𝑖)ℙ (𝒙 |y = 𝑖) 𝑑𝒙 ,

where we have used shorthand 𝛿
(
�̂� 𝑗 |𝒙

)
to denote 𝛿 (�̂� = 𝑗 |𝒙), and ℙ (𝑚 |𝒙 , y = 𝑖) = ℙ (m = 𝑚 |𝒙 , y = 𝑖). Next,

we define

𝑤𝑖 , 𝑗 = ℓclf (𝑖 , 𝑗) and

𝑤𝑖 ,⊥ =

K∑
𝑚=1

ℓexp (𝑖 , 𝑚)ℙ (𝑚 |𝒙 , y = 𝑖) .

Here, 𝑤𝑖 , 𝑗 denotes the cost associated with making a decision �̂� = 𝑗 when the actual output label is y = 𝑖.
Similarly, 𝑤𝑖 ,⊥ denotes the cost associated with deferring to the expert when the actual output label is y = 𝑖.
Plugging in these quantities, We rewrite R𝐿

D
[𝜹 (�̂� |𝒙)] below:

R𝐿
D[𝜹 (�̂� |𝒙)] =

K∑
𝑖=1

∫
𝒙

©«
K∑
𝑗=1

𝛿
(
�̂� 𝑗 |𝒙

)
𝑤𝑖 , 𝑗 + 𝛿 (�̂�K+1 |𝒙)𝑤𝑖 ,⊥

ª®®¬ℙ (y = 𝑖)ℙ (𝒙 |y = 𝑖) 𝑑𝒙 ,

Having written the expected risk in the above form, we can use the machinery from Chow (1957), and
decompose R𝐿

D
[𝜹 (�̂� |𝒙)] as follows:

R𝐿
D = R

𝐿,⊥
D

+R
𝐿,𝜹
D
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where

R
𝐿,⊥
D

=

K∑
𝑖=1

ℙ (y = 𝑖) · 𝑤𝑖 ,⊥

R
𝐿,𝜹
D

=

∫
𝒙

K+1∑
𝑗=1

𝛿
(
�̂� 𝑗 |𝒙

)
· 𝑍 𝑗 (𝒙) 𝑑𝒙 , and

𝑍 𝑗 (𝒙) =
K∑
𝑖=1

(
𝑤𝑖 , 𝑗 − 𝑤𝑖 ,⊥

)
ℙ (𝒙)ℙ (y = 𝑖 |𝒙) , 𝑗 ∈ {1, 2, . . . ,K,⊥}.

To simplify the notation we have dropped the dependence on 𝜹 in the above quantities. We can observe that
we have no control over R𝐿,⊥

D
. However, we can control R𝐿,𝜹

D
by controlling the decision rule 𝜹. We have

𝑍⊥(𝒙) = 0, and also it holds that

R
𝐿,𝜹
D

≥
∫
𝒙

min
𝑗

[
𝑍 𝑗 (𝒙)

]
𝑑𝒙 ,

where the equality holds iff 𝛿 (�̂�𝑘 |𝒙) = 1.0 for 𝑘 = arg min𝑗 𝑍 𝑗 (𝒙). Thus, the optimal rule is to deterministically
(i.e. with confidence 1.0) choose 𝑘 ∈ {1, 2, . . . ,K,⊥} with the minimum 𝑍 𝑗 (𝒙).

This means that choosing 𝑗 for which the 𝑍 𝑗(𝑥) is the smallest minimizes the expected risk. Given that 𝑍⊥ = 0,
this means that the classifier predicts when the minimum 𝑍 𝑗 (𝒙) is negative. Thus, deferral happens when
𝑍 𝑗(𝑥) is positive for all 𝑗, i.e., we can define the the optimal classifier ℎ∗(𝑥) and the rejector 𝑟∗(𝑥) as below:

ℎ∗(𝒙) = arg min
𝑗∈{1,...,K}

𝑍 𝑗(𝒙)

𝑟∗(𝒙) = 𝕀
[
𝑍 𝑗(𝒙) ≥ 0;∀𝑗 ∈ {1, . . . ,K}

]
.

A.1.3 Proof of Corollary 3.1.2

Theorem 3.1.1 says that the optimal rejector can be characterized as

𝑟∗(𝒙) = 𝕀
[
𝑍 𝑗(𝒙) ≥ 0;∀𝑗 ∈ {1, . . . , 𝐾}

]
.

By the definition of 𝑍 𝑗 (𝒙), the optimal rejection rule (or rejector) can be written as:

𝑟∗(𝒙) =
{

1 if
∑K
𝑖=1 𝑤𝑖 , 𝑗ℙ (y = 𝑖 |𝒙) ≥ ∑K

𝑖=1 𝑤𝑖 ,⊥ℙ (y = 𝑖 |𝒙) ∀𝑗 ∈ {1, . . . , 𝐾}
0 otherwise.

Or equivalently,

𝑟∗ (𝒙) =
{

1 if 𝔼y|x [ℓclf (𝑦, 𝑗 )] ≥ 𝔼y|x
[
𝔼m|x,y

[
ℓexp (𝑚, 𝑗)

] ]
∀𝑗 ∈ {1, . . . , 𝐾}

0 otherwise.
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A.1.4 Proof of Theorem 4.2.1

For K + 1 surrogate prediction function 𝑓1 (x) , . . . , 𝑓K (x) , 𝑓⊥ (x), and the binary classification surrogate
ϕ : {−1, 1} ×ℝ → ℝ+, the proposed one-vs-all (OvA) surrogate has the following pointwise form:

ψOvA( 𝑓1 , . . . , 𝑓K , 𝑔⊥; 𝑦, 𝑚) =
ϕ[ 𝑓𝑦(𝒙)] + ϕ[− 𝑓⊥(𝒙)] +

∑
𝑦′∈Y,𝑦′≠𝑦

ϕ[− 𝑓𝑦′(𝒙)] + 𝕀[𝑚 = 𝑦] (ϕ[ 𝑓⊥(𝒙)] − ϕ[− 𝑓⊥(𝒙)]) .

We consider the pointwise inner ψOvA-risk for some x = 𝒙 written as follows:

𝔼y|x=𝒙𝔼m|x=𝒙 ,y=𝑦ψOvA( 𝑓1 , . . . , 𝑓K , 𝑓⊥; 𝑦, 𝑚). (A.2)

We simplify the inner ψOvA-risk by expanding both the expectations below:

𝔼y|x=𝒙𝔼m|x=𝒙 ,y=𝑦ψOvA( 𝑓1 , . . . , 𝑓K , 𝑓⊥; 𝑦, 𝑚) =

𝔼y|x=𝒙

[
ϕ( 𝑓𝑦(𝒙)) + ϕ(− 𝑓⊥(𝒙)) +

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ(− 𝑓𝑦′ (𝒙))

+
∑
𝑚∈Y

ℙ(m = 𝑚 |x = 𝒙 , y = 𝑦)𝕀 [𝑚 = 𝑦] [ϕ( 𝑓⊥(𝒙)) − ϕ(− 𝑓⊥(𝒙))]
]
.

Expanding the outer expectation, and �𝑦 (𝒙) = ℙ (y = 𝑦 |x = 𝒙), we have:

𝔼y|x=𝒙𝔼m|x=𝒙 ,y=𝑦ψOvA( 𝑓1 , . . . , 𝑓𝐾 , 𝑓⊥; 𝒙 , 𝑦, 𝑚) =∑
𝑦∈Y

�𝑦 (𝒙)
[
ϕ
(
𝑓𝑦 (𝒙)

)
+

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ
(
− 𝑓𝑦′ (𝒙)

) ]
+ ϕ (− 𝑓⊥ (𝒙))

+
∑
𝑦∈Y

�𝑦 (𝒙)
∑
𝑚∈Y

ℙ (m = 𝑚 |x = 𝒙 , y = 𝑦) 𝕀 [𝑚 = 𝑦] [ϕ ( 𝑓⊥ (𝒙)) − ϕ (− 𝑓⊥ (𝒙))]

=
∑
𝑦∈Y

�𝑦 (𝒙)
[
ϕ
(
𝑓𝑦 (𝒙)

)
+

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ
(
− 𝑓𝑦′ (𝒙)

) ]
+ ϕ (− 𝑓⊥ (𝒙))

+
∑
𝑦∈Y

�𝑦 (𝒙)
∑
𝑚∈Y

ℙ (m = 𝑦 |x = 𝒙 , y = 𝑦) [ϕ ( 𝑓⊥ (𝒙)) − ϕ (− 𝑓⊥ (𝒙))]

=
∑
𝑦∈Y

�𝑦 (𝒙)
[
ϕ
(
𝑓𝑦 (𝒙)

)
+

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ
(
− 𝑓𝑦′ (𝒙)

) ]
+ ϕ (− 𝑓⊥ (𝒙))

+
∑
𝑦∈Y

�𝑦 (𝒙)
∑
𝑚∈Y

ℙ (m = 𝑦 |x = 𝒙 , y = 𝑦)︸                                           ︷︷                                           ︸
ℙ(y = m|x = 𝒙)

[ϕ ( 𝑓⊥ (𝒙)) − ϕ (− 𝑓⊥ (𝒙))]

=
∑
𝑦∈Y

�𝑦 (𝒙)
[
ϕ
(
𝑓𝑦 (𝒙)

)
+

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ
(
− 𝑓𝑦′ (𝒙)

) ]
+ ϕ (− 𝑓⊥ (𝒙))

+ ℙ(y = m|x = 𝒙) [ϕ ( 𝑓⊥ (𝒙)) − ϕ (− 𝑓⊥ (𝒙))]

=
∑
𝑦∈Y

�𝑦 (𝒙)
[
ϕ
(
𝑓𝑦 (𝒙)

)
+

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ
(
− 𝑓𝑦′ (𝒙)

) ]
+ ℙ(y = m|x = 𝒙)ϕ ( 𝑓⊥ (𝒙))

+ (1 − ℙ (y = m|x = 𝒙))ϕ (− 𝑓⊥ (𝒙)) .



A Appendix 46

Using the usual notation 𝑝m(𝒙) = 𝑝(y = m|x = 𝒙), we can further rewrite the above equation in the following
form,

𝔼y|x=𝒙𝔼m|x=𝒙 ,y=𝑦ψOvA( 𝑓1 , . . . , 𝑓K , 𝑓⊥; 𝑦, 𝑚) =∑
𝑦∈Y

[
�𝑦 (𝒙)ϕ

(
𝑓𝑦 (𝒙)

)
+
(
1 − �𝑦 (𝒙)

)
ϕ
(
− 𝑓𝑦 (𝒙)

) ]
+ 𝑝m (𝒙)ϕ ( 𝑓⊥ (𝒙)) + (1 − 𝑝m)ϕ (− 𝑓⊥ (𝒙)) . (A.3)

The above expression says that we have K + 1 binary classification problems where the inner ϕ-risk for the
𝑖𝑡ℎ binary classification problem is given as �𝑦 (𝒙)ϕ

(
𝑓𝑦 (𝒙)

)
+
(
1 − �𝑦 (𝒙)

)
ϕ
(
− 𝑓𝑦 (𝒙)

)
when 𝑖 ∈ [𝐾] and

𝑝m (𝒙)ϕ ( 𝑓⊥ (𝒙)) + (1 − 𝑝m (𝒙))ϕ (− 𝑓⊥ (𝑥)) when 𝑖 ∈ {K + 1}. This means that the pointwise minimizer of
the inner ψOvA -risk can be analyzed in terms of the pointwise minimizer of the inner ϕ-risk for each of
the K + 1 binary classification problems we have. Denote the minimizer of pointwise inner ψOvA-risk as 𝒇 ∗,
then the above decomposition means 𝑓 ∗

𝑖
corresponds to the minimizer of the inner ϕ-risk for the 𝑖th binary

classification problem.

We know that the Bayes solution for the binary classification problem is sign
(
�(𝒙) − 1

2
)

where �(𝒙) denotes
𝑝(y = 1|x = 𝒙). Now when the binary surrogate loss ϕ is a strictly proper composite loss for binary
classification, by the property of strictly proper composite losses, we have sign( 𝑓 ∗𝑦 (𝒙)) would agree with
the Bayes solution of the Binary classification (refer Equation 2.9 Chapter 2 (Preliminaries)), i.e. 𝑓 ∗𝑦 (𝒙) > 0
if �𝑦 (𝒙) > 1

2 . And similarly 𝑓 ∗⊥ (𝒙) > 0 if 𝑝m (𝒙) > 1
2 . Furthermore, we have the existence of a continuous

and increasing inverse link function γ−1 for the binary surrogate ϕ with the property that γ−1
(
𝑓 ∗𝑦 (𝒙)

)
would converge to �𝑦 (𝒙). Similarly, γ−1 ( 𝑓 ∗⊥ (𝒙)

)
would converge to 𝑝m (𝒙) (refer Equation 2.10 Chapter 2

(Preliminaries)).

Using the above information, we can establish the Bayes optimal decision for this minimizer 𝒇 ∗ using
following cases.

Case 1: If we have 𝑓 ∗𝑦 (𝒙) > 0 and 𝑓 ∗⊥ (𝒙) > 0 for some 𝑦 ∈ Y. Note that we cannot have 𝑦 ≠ 𝑦
′ both

belonging to [K] such that 𝑓 ∗𝑦 (𝒙) > 0 and 𝑓 ∗
𝑦
′ (𝒙) > 0. Because this would imply �𝑦(𝒙) > 1

2 and �𝑦′ (𝒙) > 1
2

which contradicts the rules of probabilities. Thus, theoretically, only one such 𝑦 ∈ Y is possible such that
𝑓 ∗𝑦 (𝒙) > 0. And if we take the prediction for our L2D problem as arg max𝑘∈[K+1] 𝑓

∗
𝑘
(𝒙), our prediction would

correspond to the Bayes optimal decision, i.e. if

𝑓 ∗𝑦 (𝒙) < 𝑓 ∗⊥ (𝒙) ∀𝑦 ∈ Y

=⇒ γ−1
(
𝑓 ∗𝑦 (𝒙)

)
< γ−1 ( 𝑓 ∗⊥ (𝒙)) ∀𝑦 ∈ Y

=⇒ �𝑦 (𝒙) < 𝑝m (𝒙) ∀𝑦 ∈ Y.

Thus, such if 𝑓 ∗⊥(𝒙) > 𝑓 ∗𝑦 (𝒙) such that 𝑓 ∗⊥(𝒙) > 0, 𝑓 ∗𝑦 (𝒙) > 0, then the prediction following the decision rule
arg max𝑘∈[K+1] 𝑔

∗
𝑘
(𝒙) would correspond with the Bayes optimal rule

𝑟 (𝒙) = 𝕀

[
max
𝑦∈Y

�𝑦 (𝒙) < 𝑝m (𝒙)
]
.

Case 2: In this case, if �𝑦 ∈ Y s.t. 𝑓 ∗𝑦 (𝒙) > 0, but 𝑓 ∗⊥(𝒙) > 0, then the same argument as above implies the
decision with the Bayes optimal rule.

Case 3: if ∃𝑦 ∈ Y s.t. 𝑓 ∗𝑦 (𝒙) > 0, but 𝑓 ∗⊥(𝒙) < 0, then the same argument as above implies the decision with
the Bayes optimal rule. In this case, we will have 𝑟(𝒙) = 0, and the classifier’s prediction would correspond
with the regular Bayes optimal classifier, i.e. arg max𝑦∈Y�𝑦(𝒙).
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Case 4: In this case, if �𝑦 ∈ Ys.t. 𝑓 ∗𝑦 (𝒙) > 0, and also 𝑓 ∗⊥(𝒙) < 0. This situation invokes the common ‘none of
the above’ classification rule for One-vs-All classifiers. However, γ−1 would still measure �𝑦 (𝒙) and 𝑝m (𝒙).

Thus, the cases above imply that the minimizer of the pointwise inner ψ-risk gives the Bayes optimal classifier
and rejection prediction for x = 𝒙. Thus, the surrogate loss ϕ is calibrated for 0 − 1 L2D loss function.

A.2 Derivations

A.2.1 Derivation of inverse link functions for ϕSM

From the proof of Theorem 1 of Mozannar and Sontag (2020), we have for the Bayes Optimal 𝑓 ∗(𝒙):

ℙ (y = 𝑦 |𝒙)
1 + ℙ (m = y|𝒙) =

exp 𝑓 ∗𝑦 (𝒙)∑
𝑦′∈Y⊥ exp 𝑓 ∗𝑦′(𝒙)

ℙ(m = y|𝒙)
1 + ℙ(m = y|𝒙) =

exp 𝑓 ∗⊥(𝒙)∑
𝑦′∈Y⊥ exp 𝑓 ∗𝑦′(𝒙)

.

where we denote ℙ (y = 𝑦 |x = 𝒙) = 𝛾𝑦 ( 𝑓 ∗ (𝒙)), and ℙ (m = y|x = 𝒙) = 𝛾m ( 𝑓 ∗ (𝒙)). From the second expres-
sion above, we easily have

𝛾m ( 𝑓 ∗ (𝒙)) = ℙ (m = y|x = 𝒙) =
exp{ 𝑓 ∗⊥(𝒙)}∑

𝑦′∈Yexp{ 𝑓 ∗𝑦′(𝒙)}
.

Plugging in the expression of ℙ(m = y|x = 𝒙) in the first expression, we have

𝛾𝑦 ( 𝑓 ∗ (𝒙)) = ℙ (y = 𝑦 |x = 𝒙) =
exp{ 𝑓 ∗𝑦 (𝒙)}∑

𝑦′∈Yexp{ 𝑓 ∗𝑦′(𝒙)}
.

A.2.2 Closed-form expression for ψOvA

We derive the closed-form expression for surrogate loss ψOvA using the procedure described in Section 2.4 in
Chapter 2 (Preliminaries) for the code matrix M defined in Section 4.1. For the surrogate prediction space ℝ,
and 𝑓𝑦 : X→ ℝ, 𝑦 ∈ Yand 𝑓⊥ : X→ ℝ and 𝒇 (x) = [ 𝑓1 (x) , . . . , 𝑓⊥ (x)], we can use M to derive the closed
form expression for the surrogate loss ψOvA : Y×ℝK̂+1 ×M→ ℝ+ as follows:

1. Case 1: ψOvA ( 𝒇 ; 𝑦, 𝑚) for 𝑦 such that 𝕀 [𝑦 ≠ m] = 1
In this case, we can follow the definition of M to gather that 𝑚𝑦 𝑗 = 1 only if 𝑗 = 𝑦. Thus, we get

ψOvA ( 𝒇 ; 𝑦, 𝑚) = ϕ
[
𝑓𝑦 (𝒙)

]
+

∑
𝑦
′∈Y∪{⊥}
𝑦
′
≠𝑦

ϕ
[
− 𝑓𝑦′ (𝒙)

]
2. Case 2: ψOvA (𝒈 ; 𝑦, 𝑚) for 𝑦 such that 𝕀 [𝑦 = 𝑚] = 1

In this case, we have 𝑚𝑦𝑦 = 1 as well as 𝑚𝑦⊥ = 1 where ⊥ denotes the index (K + 1). Thus,

ψOvA ( 𝒇 ; 𝑦, 𝑚) = ϕ
[
𝑓𝑦 (𝒙)

]
+ ϕ [ 𝑓⊥ (𝒙)] +

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ
[
− 𝑓𝑦′ (𝒙)

]
.
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Finally, we can combine both the cases to get

ψOvA ( 𝒇 ; 𝑦, 𝑚) = ϕ
[
𝑓𝑦 (𝒙)

]
+ ϕ [− 𝑓⊥ (𝒙)] +

∑
𝑦
′∈Y,𝑦′≠𝑦

ϕ
[
− 𝑓𝑦′ (𝒙)

]
+ 𝕀 [𝑚 = 𝑦] (ϕ [ 𝑓⊥ (𝒙)] − ϕ [− 𝑓⊥ (𝒙)]) .

where ϕ : {−1, 1} ×ℝ → ℝ+ is a binary classification surrogate loss, and ϕ
[
𝑓𝑦 (𝒙)

]
= ϕ(1, 𝑓𝑦 (𝒙)). Similarly,

ϕ
[
− 𝑓𝑦 (𝒙)

]
= ϕ(−1, 𝑓𝑦 (𝒙)).

A.2.3 Derivation of inverse link functions for ϕSM in multi-experts setting

We follow the proof of Theorem 2 of Mozannar and Sontag (2020) to write the risk, denoted as𝐿
(
𝑓1 , . . . , 𝑓⊥,𝐽 ; 𝒙 , 𝑦, 𝑚1 , . . . , 𝑚𝐽

)
,

for multi-expert learning to defer as follows:

𝐿
(
𝑓1 , . . . , 𝑓⊥,𝐽 ; 𝒙 , 𝑦, 𝑚1 , . . . , 𝑚𝐽

)
=

−
∑
𝑦∈Y

�𝑦(𝒙) log
( exp{ 𝑓𝑦(𝒙)}∑

𝑦′∈Y⊥ exp{ 𝑓𝑦′(𝒙)}

)
−

𝐽∑
𝑗=1

ℙ(m𝑗 = y|𝒙) log
( exp{ 𝑓⊥, 𝑗(𝒙)}∑

𝑦′∈Y⊥ exp{ 𝑓𝑦′(𝒙)}

)
.

We take the partial derivatives with respect to each 𝑓 function and set them to 0. Placing in the optimal
classifier ℎ∗, and taking derivative with respect to 𝑓𝑗 and setting it to 0, we get the desired relationship for the
optimal 𝑓 ∗

𝑗
:

ℙ(m𝑗 = y|𝒙)
1 +∑𝐽

𝑗′=1 ℙ(m𝑗′ = y|𝒙)
=

exp{ 𝑓 ∗⊥, 𝑗 (𝒙)}∑
𝑦′∈Y⊥ exp{ 𝑓 ∗𝑦′(𝒙)}

.

Denote the RHS of the above equation as 𝑝⊥, 𝑗 ( 𝑓 ∗ (𝒙)). Since we have 𝐽 equations, one for each expert, we can
uniquely solve for ℙ(m𝑗 = y|𝒙) as:

ℙ(m𝑗 = y|𝒙) =
𝑝⊥, 𝑗 ( 𝑓 ∗ (𝒙))

1 −∑𝐽

𝑗′=1 𝑝⊥, 𝑗′ ( 𝑓 ∗ (𝒙))
.

A.3 Additional Experimental Details

Below we provide more details on our experimental set-up.

CIFAR-10 For the experiments on CIFAR-10, we use 28-layer Wide Residual Networks Zagoruyko and
Komodakis, 2016 without using any data augmentation techniques following Mozannar and Sontag (2020).
We use SGD with a momentum of 0.9, weight decay 5𝑒 − 4, and initial learning rate of 0.1. We further use
cosine annealing learning rate schedule. We monitor validation loss, and employ early stopping to terminate
the training if the loss doesn’t improve for 20 epochs. The datasets are standardized to have 0 mean and
unit variance. We train the models with a batch size of 1024. These experimental settings apply to both the
Softmax Surrogate and the One-vs-All surrogate loss.

HAM10000 To simulate the expert, we train an 8-layer MLPMixer model Tolstikhin et al., 2021. We make
use of the publicly available code ∗ for MLPMixer model. We resize the HAM10000 images to 224 × 224 for
our experiments. The 8-layer model has patch size of 16, expansion factor 2, and the dimensionality of the
features to be 128. We train this model with Adam optimization algorithm with a learning rate of 0.001,
weight decay of 5𝑒 − 4. We further use cosine annealing learning rate schedule with a warm-up period of

∗ https://github.com/jaketae/mlp-mixer/

https://github.com/jaketae/mlp-mixer/
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5 epochs. The model is trained with a batch size of 1024, again with early stopping with a patience of 20
epochs. Since our goal was to simulate the real-world expert, we did not do extensive hyperparameter search
for the expert model. For our main model on HAM10000, we finetune ResNet34 model. The training settings
are same for the surrogate loss methods for CIFAR-10 experiments.

For our other baselines, we use the code made available by the respective authors.
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