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ℛ(ψ) = 𝔼P [ℓ ( ̂fψ(X), Y)]
control this risk

Goal:find threshold(s)  such that  
ψ̂

ℙ{ℛ(ψ̂) ≤ ϵ} ≥ 1 − δ

Static batch setting:  is computed once using hold-out calibration set, 
and deployed indefinitely.


The risk control guarantee holds on the static distribution  over time.  

ψ̂

P0







There is a need to continuously monitor the risk control 
guarantees on the predictive systems. 
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Goal: for the considered threshold , decide whether it controls the 
instantaneous risk by ideally sample access at each time step.
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A sequential forecasting game.

Nature Forecaster

πt estimate of the risk at the 
next time step: t

zt realised loss value 

Forecaster incurs error: δt = zt − πt

The error process  can be used to construct the tracker. (δt)t∈𝒯
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Test supermartingale 



Testing by betting:

Mt(ψ) is the wealth process of an agent actively betting against the null.
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More results in the paper:

Confidence sets, asymptotic consistency and detection delay bound, betting strategies. 
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                   Questions?


