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The role of statistical inference in machine learning



Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.
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Machine Learning: Risk Controlling frameworks
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treat the patient

J(X) = g(f(x), @)
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e.g. false positive rate

fx) >y

treat the patient
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control this risk
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Anastasios N. Angel los!, Stephen Bates!, Adam Fisch?, Lihua Lei®, and Tal Schust : : - : :
HASLASIOS HECIOPOUIOS, SIEPAEH Dates A FIse FHHA e, ARG ST SEE Stephen Bates] Anastasios Angelopoulos} Lihua Lei} Jitendra Malik, Michael I. Jordar
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Abstract
Abstract

We extend conformal prediction to control the expected value of any monotone loss function. The While improving prediction accuracy has been the focus of machine learning in recent years, this
algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings

Learn then Test:
Calibrating Predictive Algorithms to Achieve Risk Control

Anastasios N. Angelopoulos, Stephen Bates, Emmanuel J. Candés, Michael I. Jordan, Lihua Lei

October 3, 2022

Abstract

We introduce a framework for calibrating machine learning models so that their predictions satisfy explicit,

n 1 i 1 i 1 ~ 1 /
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We extend conformal prediction to control the expected value of any monotone loss function. The While ir- vs, this

algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal a}one dOG_S I Algorithmic learning in a random World ?ttings

by Vladimir Vovk, Alex Gammerman, and Glenn Shafer

Springer, 2005 (first edition), 2022 (second edition)

Learn then Test:

The main topic of this book is conformal prediction, a method

Calibrating Predictive Algorithms to Achieve Risk Control e e machine leaming, and unlike other state-of-the-art methods, th

Glenn Shafer

The book integrates mathematical theory and revealing experir
are applied to independent and identically distributed data, and
results to models called repetitive structures, which originate i1

: e existing methods of machine learning, including newer methoc
| Algorithmic

Learning in
Abstract a Ra ndom

We introduce a framework for calibrating machine learning models so that their predictions satisfy explicit, WOrld
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Anastasios N. Angelopoulos, Stephen Bates, Emmanuel J. Candes, Michael I. Jordan, Lihua Lei

October 3, 2022

Topics and Features:

Describes how conformal predictors yield accurate and reliable
Handles both classification and regression problems

Explains how to apply the new algorithms to real-world data s
Demonstrates the infeasibility of some standard prediction task
Explains connections with Kolmogorov's algorithmic randomn
Develops new methods of probability forecasting and shows h

Second Edition

PN
1 Springer

Researchers in computer science, statistics, and artificial intelli
machine learning. Practitioners and students in all areas of rese
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Risk Controlling frameworks: conformal prediction



{(xia yi)}é\il (%, y) ~ Py
calibration set R(y) = Ep [f (fw(X), Y)]
s: XXY - [0,B]

control this risk

compatiblility score

£ 1s(xy) < w) Goal:find threshold(s) v such that

loss function P{AW) <e}>1-6

Risk Controlling frameworks: conformal prediction



{(xia yi)}é\il (%, y) ~ Py
calibration set R(y) = Ep [f (fw(X), Y)]
s: XXY - [0,B]

control this risk

compatiblility score

£ 1s(xy) < w) Goal:find threshold(s) v such that

loss function P{AW) <e}>1-6
R(p) = PisX,Y) < yj

Risk function

Risk Controlling frameworks: conformal prediction



empirical CDF function

{(xia yl) }i\;l (x,y) ~ Py
calibration set
s: XXY— [0,B]

compatiblility score

c o I{s(x,y) < yj
loss function sX,Y) ——

R(y) = P{s(X,Y) <y} Goal:find threshold(s) i such that

Risk function P{RW) <e}l>1-6
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R(y) = E; [f (7,00, Y)]
control this risk

Goal:find threshold(s) v such that

P{R) <e}>1—-0

Static batch setting: v is computed once using hold-out ‘calibration set,
and deployed indefinitely.

The risk control guarantee holds on the static distribution P over time.
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On Continuous Monitoring of Risk Violations under Unknown Shift

'UvA-Bosch Delta Lab, University of Amsterdam
’Department of Computer Science, Johns Hopkins University

Abstract

Machine learning systems deployed in the real
world must operate under dynamic and often
unpredictable distribution shifts. This challenges
the validity of statistical safety assurances on the
system’s risk established beforehand. Common
risk control frameworks rely on fixed assumptions
and lack mechanisms to continuously monitor
deployment reliability. In this work, we propose a
general framework for the real-time monitoring of

systems has the potential to thwart any ‘quality assurance’
stamp these methods derive from their static inference.
Challenges like outliers, distribution shifts and feedback

terdam et al. [2025] argue that an effective machine learning
model should actively affect the real-world—distribution
shift 1s then not merely an artifact or deployment challenge,
but rather a manifestation of a successfully operating
system. Hence, any decision-making parameters necessitate
continuous monitoring during deployment, and the user
should be notified when statistical reliability 1s faltering.

—— - - - - - - - - - - -
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There is a need to continuously monitor the risk control

guarantees on the predictive systems.

'UvA-Bosch Delta Lab, University of Amsterdam
’Department of Computer Science, Johns Hopkins University

Abstract systems has the potential to thwart any ‘quality assurance’

stamp these methods derive from their static inference.
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world must operate under dynamic and often
unpredictable distribution shifts. This challenges
the validity of statistical safety assurances on the

terdam et al. [2025] argue that an effective machine learning
model should actively affect the real-world—distribution
shift 1s then not merely an artifact or deployment challenge,
system’s risk established beforehand. Common but rather a manifestation of a successfully operating
risk control frameworks rely on fixed assumptions system. Hence, any decision-making parameters necessitate
and lack mechanisms to continuously monitor continuous monitoring during deployment, and the user
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Z=2000,1,X,Y)

(xl,)ﬁ) ~ P (Xt,Yt) ~ P (XT,}’T) ~ Pr

t=1 Data streamt € T t="T




On Continuous Monitoring of Risk Violations under Unknown Shift

Z=2000,1,X,Y)

(x1,y1) ~ Py (x¢,y¢) ~ P (x7,y71) ~ Pr
t=1 Data streamt € T t="T
_Pl[Zl] <€ = pt[Zt] <€ = PT[ZT] <€

Approach: deploy a risk tracker M () to monitor risk violations.
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Properties of risk tracker: if the risk violations happen, the tracker should grow.

If the tracker does grow, it should signal risk violations with high probability.

Approach: deploy a risk tracker M () to monitor risk violations.
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Nature Forecaster
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Data streamt € T

A seqguential forecasting game.

estimate of the risk at the
next time step: ¢

t=1
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Nature Forecaster

]Z' f estimate of the risk at the

Zt realised loss value . _
next time step: ¢

t— 1 Data streamt € T t="T

A sequential forecasting game.
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Nature Forecaster

]Z' f estimate of the risk at the

Zl‘ realised loss value . _
next time step: ¢

t =1 Data streamt € T t =T

Forecaster incurs error: 0, = z, — 7,

If the forecaster is playing their best move: 7, = Ep[Z,| #,_,], then
the forecaster would incur diminishing errors.

A sequential forecasting game.
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]Z' f estimate of the risk at the

Zl‘ realised loss value . _
next time step: ¢

t =1 Data streamt € T t =T

Forecaster incurs error: 0, = z, — 7,

If the forecaster is playing their best move: 7, = Ep[Z,[ #,_], then

the forecaster won’t incur error, as Ep [Z, — 7, | #,_;] = 0.

A sequential forecasting game.



Nature Forecaster

]Z' f estimate of the risk at the

Zl‘ realised loss value . _
next time step: ¢

t =1 Data streamt € T t =T

Forecaster incurs error: 0, = z, — 7,

The error process (0,),- 5 can be used to construct the tracker.

A sequential forecasting game.



M (y) = H(l +4;+0;) = H(l + A,(z; — €))
i=1 i=1

If the risk is controlled, then the tracker will not grow.
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M (y) = H(l +4;+0;) = H(l + A,(z; — €))
i=1 i=1

If the risk is controlled, then the tracker will not grow.

Test supermartingale

3

_[Mt(W) ‘ LO/?t_l] — Mt_l ' _Pt[/lt(zt — 6) ‘ 91_1]

Submitted to Statistical Science

Game-Theoretic Statistics and
Safe Anytime-Valid Inference

Aaditya Ramdas, Peter Grunwald, Vladimir Vovk and Glenn Shafer

Abstract. Safe anytime-valid inference (SAVI) provides measures of statisti-
cal evidence and certainty—e-processes for testing and confidence sequences
for estimation—that remain valid at all stopping times, accommodating con-



Testing by betting:

M (y)

IS the wealth process of an agent actively betting against the null.

2023

Submitted to Statistical Science

Game-Theoretic Statistics and
Safe Anytime-Valid Inference

Aaditya Ramdas, Peter Grunwald, Vladimir Vovk and Glenn Shafer

Abstract. Safe anytime-valid inference (SAVI) provides measures of statisti-
cal evidence and certainty—e-processes for testing and confidence sequences
for estimation—that remain valid at all stopping times, accommodating con-
tinuous monitoring and analysis of accumulating data and optional stopping
or continuation for any reason. These measures crucially rely on test martin-



On Continuous Monitoring of Risk Violations under Unknown Shift

Properties of risk tracker: if the risk violations happen, the tracker should grow.

If the tracker does grow, it should signal risk violations with high probability.

Approach: deploy a risk tracker M () to monitor risk violations.



On Continuous Monitoring of Risk Violations under Unknown Shift

Lemma 4.2 (False alarm guarantee). For any v € ¥ such
that Ep, |z, | Fi—1| < € Vt € T satisfies the null, it holds
that P (3t € T : My(¢p) > 1/6) < 6.

If the tracker does grow, it should signal risk violations with high probabillity.

Definition 4.4 (Growth rate optimality (GRO)). The betting
rate \; is growth rate optimal if it satisfies the condition

At = argmax, ¢ 1/¢) Ea, log M ().

If the risk violations happen, the tracker should grow.



Empirical demonstration
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Figure 2: Results for outlier detection with a stepwise shift (§ 6.1). From left to right: Visuals of the growing risk and
wealth process behaviour with respective rejection thresholds € and 1/4, for a single threshold candidate (here v» = 0.50);
the behaviour of the valid threshold set ¥)-CS (Eq. 5), which eventually shrinks to zero signalling a model update; and the
empirical distributions of detection delays 7 (1)) — 7, (1)) across all 1) € ¥, including the false alarm region (FP). We also
have B = 1,5 = 50 and t,,; = 200, with results evaluated over R = 50 trials (mean and std. deviation).



Empirical demonstration
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Figure 3: Results for set prediction with a temporal shift on FMoW (§ 6.2). From left to right: Visuals of the growing
risk and wealth process behaviour with respective rejection thresholds € and 1/4, for a single threshold candidate (here
1 = 0.08); the behaviour of the valid threshold set 1¥-CS (Eq. 5), which eventually tends to zero signalling a model update;
and the empirical distributions of detection delays 7(v’) — 7. (%) across all ¢/ € ¥, including the false alarm region (FP). We
also have B = 1 and S = 365 (one year), with results evaluated over R = 50 trials (mean and std. deviation).



More results in the paper:

Confidence sets, asymptotic consistency and detection delay bound, betting strategie
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